package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val get_py : string -> Py.Object.t

Get an attribute of this module as a Py.Object.t. This is useful to pass a Python function to another function.

val block_diag : ?format:string -> ?dtype:Py.Object.t -> mats:Py.Object.t -> unit -> [ `ArrayLike | `Object | `Spmatrix ] Np.Obj.t

Build a block diagonal sparse matrix from provided matrices.

Parameters ---------- mats : sequence of matrices Input matrices. format : str, optional The sparse format of the result (e.g. 'csr'). If not given, the matrix is returned in 'coo' format. dtype : dtype specifier, optional The data-type of the output matrix. If not given, the dtype is determined from that of `blocks`.

Returns ------- res : sparse matrix

Notes -----

.. versionadded:: 0.11.0

See Also -------- bmat, diags

Examples -------- >>> from scipy.sparse import coo_matrix, block_diag >>> A = coo_matrix([1, 2], [3, 4]) >>> B = coo_matrix([5], [6]) >>> C = coo_matrix([7]) >>> block_diag((A, B, C)).toarray() array([1, 2, 0, 0], [3, 4, 0, 0], [0, 0, 5, 0], [0, 0, 6, 0], [0, 0, 0, 7])

val bmat : ?format:[ `Lil | `Bsr | `Csr | `Csc | `Coo | `Dia | `Dok ] -> ?dtype:Np.Dtype.t -> blocks:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Object | `Spmatrix ] Np.Obj.t

Build a sparse matrix from sparse sub-blocks

Parameters ---------- blocks : array_like Grid of sparse matrices with compatible shapes. An entry of None implies an all-zero matrix. format : 'bsr', 'coo', 'csc', 'csr', 'dia', 'dok', 'lil', optional The sparse format of the result (e.g. 'csr'). By default an appropriate sparse matrix format is returned. This choice is subject to change. dtype : dtype, optional The data-type of the output matrix. If not given, the dtype is determined from that of `blocks`.

Returns ------- bmat : sparse matrix

See Also -------- block_diag, diags

Examples -------- >>> from scipy.sparse import coo_matrix, bmat >>> A = coo_matrix([1, 2], [3, 4]) >>> B = coo_matrix([5], [6]) >>> C = coo_matrix([7]) >>> bmat([A, B], [None, C]).toarray() array([1, 2, 5], [3, 4, 6], [0, 0, 7])

>>> bmat([A, None], [None, C]).toarray() array([1, 2, 0], [3, 4, 0], [0, 0, 7])

val diags : ?offsets:Py.Object.t -> ?shape:Py.Object.t -> ?format:[ `Lil | `Csr | `Csc | `Dia | `T of Py.Object.t ] -> ?dtype:Np.Dtype.t -> diagonals:Py.Object.t -> unit -> Py.Object.t

Construct a sparse matrix from diagonals.

Parameters ---------- diagonals : sequence of array_like Sequence of arrays containing the matrix diagonals, corresponding to `offsets`. offsets : sequence of int or an int, optional Diagonals to set:

  • k = 0 the main diagonal (default)
  • k > 0 the k-th upper diagonal
  • k < 0 the k-th lower diagonal shape : tuple of int, optional Shape of the result. If omitted, a square matrix large enough to contain the diagonals is returned. format : 'dia', 'csr', 'csc', 'lil', ..., optional Matrix format of the result. By default (format=None) an appropriate sparse matrix format is returned. This choice is subject to change. dtype : dtype, optional Data type of the matrix.

See Also -------- spdiags : construct matrix from diagonals

Notes ----- This function differs from `spdiags` in the way it handles off-diagonals.

The result from `diags` is the sparse equivalent of::

np.diag(diagonals0, offsets0)

  1. ...
  2. np.diag(diagonalsk, offsetsk)

Repeated diagonal offsets are disallowed.

.. versionadded:: 0.11

Examples -------- >>> from scipy.sparse import diags >>> diagonals = [1, 2, 3, 4], [1, 2, 3], [1, 2] >>> diags(diagonals, 0, -1, 2).toarray() array([1, 0, 1, 0], [1, 2, 0, 2], [0, 2, 3, 0], [0, 0, 3, 4])

Broadcasting of scalars is supported (but shape needs to be specified):

>>> diags(1, -2, 1, -1, 0, 1, shape=(4, 4)).toarray() array([-2., 1., 0., 0.], [ 1., -2., 1., 0.], [ 0., 1., -2., 1.], [ 0., 0., 1., -2.])

If only one diagonal is wanted (as in `numpy.diag`), the following works as well:

>>> diags(1, 2, 3, 1).toarray() array([ 0., 1., 0., 0.], [ 0., 0., 2., 0.], [ 0., 0., 0., 3.], [ 0., 0., 0., 0.])

val eye : ?n:int -> ?k:int -> ?dtype:Np.Dtype.t -> ?format:string -> m:int -> unit -> Py.Object.t

Sparse matrix with ones on diagonal

Returns a sparse (m x n) matrix where the k-th diagonal is all ones and everything else is zeros.

Parameters ---------- m : int Number of rows in the matrix. n : int, optional Number of columns. Default: `m`. k : int, optional Diagonal to place ones on. Default: 0 (main diagonal). dtype : dtype, optional Data type of the matrix. format : str, optional Sparse format of the result, e.g. format='csr', etc.

Examples -------- >>> from scipy import sparse >>> sparse.eye(3).toarray() array([ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]) >>> sparse.eye(3, dtype=np.int8) <3x3 sparse matrix of type '<class 'numpy.int8'>' with 3 stored elements (1 diagonals) in DIAgonal format>

val get_index_dtype : ?arrays:Py.Object.t -> ?maxval:float -> ?check_contents:bool -> unit -> Np.Dtype.t

Based on input (integer) arrays `a`, determine a suitable index data type that can hold the data in the arrays.

Parameters ---------- arrays : tuple of array_like Input arrays whose types/contents to check maxval : float, optional Maximum value needed check_contents : bool, optional Whether to check the values in the arrays and not just their types. Default: False (check only the types)

Returns ------- dtype : dtype Suitable index data type (int32 or int64)

val get_randint : Py.Object.t -> Py.Object.t

None

val hstack : ?format:string -> ?dtype:Np.Dtype.t -> blocks:Py.Object.t -> unit -> Py.Object.t

Stack sparse matrices horizontally (column wise)

Parameters ---------- blocks sequence of sparse matrices with compatible shapes format : str sparse format of the result (e.g. 'csr') by default an appropriate sparse matrix format is returned. This choice is subject to change. dtype : dtype, optional The data-type of the output matrix. If not given, the dtype is determined from that of `blocks`.

See Also -------- vstack : stack sparse matrices vertically (row wise)

Examples -------- >>> from scipy.sparse import coo_matrix, hstack >>> A = coo_matrix([1, 2], [3, 4]) >>> B = coo_matrix([5], [6]) >>> hstack(A,B).toarray() array([1, 2, 5], [3, 4, 6])

val identity : ?dtype:Np.Dtype.t -> ?format:string -> n:int -> unit -> Py.Object.t

Identity matrix in sparse format

Returns an identity matrix with shape (n,n) using a given sparse format and dtype.

Parameters ---------- n : int Shape of the identity matrix. dtype : dtype, optional Data type of the matrix format : str, optional Sparse format of the result, e.g. format='csr', etc.

Examples -------- >>> from scipy.sparse import identity >>> identity(3).toarray() array([ 1., 0., 0.], [ 0., 1., 0.], [ 0., 0., 1.]) >>> identity(3, dtype='int8', format='dia') <3x3 sparse matrix of type '<class 'numpy.int8'>' with 3 stored elements (1 diagonals) in DIAgonal format>

val isscalarlike : Py.Object.t -> Py.Object.t

Is x either a scalar, an array scalar, or a 0-dim array?

val issparse : Py.Object.t -> Py.Object.t

Is x of a sparse matrix type?

Parameters ---------- x object to check for being a sparse matrix

Returns ------- bool True if x is a sparse matrix, False otherwise

Notes ----- issparse and isspmatrix are aliases for the same function.

Examples -------- >>> from scipy.sparse import csr_matrix, isspmatrix >>> isspmatrix(csr_matrix([5])) True

>>> from scipy.sparse import isspmatrix >>> isspmatrix(5) False

val kron : ?format:string -> a:Py.Object.t -> b:Py.Object.t -> unit -> Py.Object.t

kronecker product of sparse matrices A and B

Parameters ---------- A : sparse or dense matrix first matrix of the product B : sparse or dense matrix second matrix of the product format : str, optional format of the result (e.g. 'csr')

Returns ------- kronecker product in a sparse matrix format

Examples -------- >>> from scipy import sparse >>> A = sparse.csr_matrix(np.array([0, 2], [5, 0])) >>> B = sparse.csr_matrix(np.array([1, 2], [3, 4])) >>> sparse.kron(A, B).toarray() array([ 0, 0, 2, 4], [ 0, 0, 6, 8], [ 5, 10, 0, 0], [15, 20, 0, 0])

>>> sparse.kron(A, [1, 2], [3, 4]).toarray() array([ 0, 0, 2, 4], [ 0, 0, 6, 8], [ 5, 10, 0, 0], [15, 20, 0, 0])

val kronsum : ?format:string -> a:Py.Object.t -> b:Py.Object.t -> unit -> Py.Object.t

kronecker sum of sparse matrices A and B

Kronecker sum of two sparse matrices is a sum of two Kronecker products kron(I_n,A) + kron(B,I_m) where A has shape (m,m) and B has shape (n,n) and I_m and I_n are identity matrices of shape (m,m) and (n,n) respectively.

Parameters ---------- A square matrix B square matrix format : str format of the result (e.g. 'csr')

Returns ------- kronecker sum in a sparse matrix format

Examples --------

val rand : ?density:Py.Object.t -> ?format:string -> ?dtype:Np.Dtype.t -> ?random_state:[ `I of int | `Numpy_random_RandomState of Py.Object.t ] -> m:Py.Object.t -> n:Py.Object.t -> unit -> [ `ArrayLike | `Object | `Spmatrix ] Np.Obj.t

Generate a sparse matrix of the given shape and density with uniformly distributed values.

Parameters ---------- m, n : int shape of the matrix density : real, optional density of the generated matrix: density equal to one means a full matrix, density of 0 means a matrix with no non-zero items. format : str, optional sparse matrix format. dtype : dtype, optional type of the returned matrix values. random_state : numpy.random.RandomState, int, optional Random number generator or random seed. If not given, the singleton numpy.random will be used.

Returns ------- res : sparse matrix

Notes ----- Only float types are supported for now.

See Also -------- scipy.sparse.random : Similar function that allows a user-specified random data source.

Examples -------- >>> from scipy.sparse import rand >>> matrix = rand(3, 4, density=0.25, format='csr', random_state=42) >>> matrix <3x4 sparse matrix of type '<class 'numpy.float64'>' with 3 stored elements in Compressed Sparse Row format> >>> matrix.todense() matrix([0.05641158, 0. , 0. , 0.65088847], [0. , 0. , 0. , 0.14286682], [0. , 0. , 0. , 0. ])

val random : ?density:Py.Object.t -> ?format:string -> ?dtype:Np.Dtype.t -> ?random_state:[ `I of int | `Numpy_random_RandomState of Py.Object.t ] -> ?data_rvs:Py.Object.t -> m:Py.Object.t -> n:Py.Object.t -> unit -> [ `ArrayLike | `Object | `Spmatrix ] Np.Obj.t

Generate a sparse matrix of the given shape and density with randomly distributed values.

Parameters ---------- m, n : int shape of the matrix density : real, optional density of the generated matrix: density equal to one means a full matrix, density of 0 means a matrix with no non-zero items. format : str, optional sparse matrix format. dtype : dtype, optional type of the returned matrix values. random_state : numpy.random.RandomState, int, optional Random number generator or random seed. If not given, the singleton numpy.random will be used. This random state will be used for sampling the sparsity structure, but not necessarily for sampling the values of the structurally nonzero entries of the matrix. data_rvs : callable, optional Samples a requested number of random values. This function should take a single argument specifying the length of the ndarray that it will return. The structurally nonzero entries of the sparse random matrix will be taken from the array sampled by this function. By default, uniform 0, 1) random values will be sampled using the same random state as is used for sampling the sparsity structure. Returns ------- res : sparse matrix Notes ----- Only float types are supported for now. Examples -------- >>> from scipy.sparse import random >>> from scipy import stats >>> class CustomRandomState(np.random.RandomState): ... def randint(self, k): ... i = np.random.randint(k) ... return i - i % 2 >>> np.random.seed(12345) >>> rs = CustomRandomState() >>> rvs = stats.poisson(25, loc=10).rvs >>> S = random(3, 4, density=0.25, random_state=rs, data_rvs=rvs) >>> S.A array([[ 36., 0., 33., 0.], # random [ 0., 0., 0., 0.], [ 0., 0., 36., 0.]]) >>> from scipy.sparse import random >>> from scipy.stats import rv_continuous >>> class CustomDistribution(rv_continuous): ... def _rvs(self, *args, **kwargs): ... return self._random_state.randn( *self._size) >>> X = CustomDistribution(seed=2906) >>> Y = X() # get a frozen version of the distribution >>> S = random(3, 4, density=0.25, random_state=2906, data_rvs=Y.rvs) >>> S.A array([[ 0. , 0. , 0. , 0. ], [ 0.13569738, 1.9467163 , -0.81205367, 0. ], [ 0. , 0. , 0. , 0. ]])

val spdiags : ?format:string -> data:[> `Ndarray ] Np.Obj.t -> diags:Py.Object.t -> m:Py.Object.t -> n:Py.Object.t -> unit -> Py.Object.t

Return a sparse matrix from diagonals.

Parameters ---------- data : array_like matrix diagonals stored row-wise diags : diagonals to set

  • k = 0 the main diagonal
  • k > 0 the k-th upper diagonal
  • k < 0 the k-th lower diagonal m, n : int shape of the result format : str, optional Format of the result. By default (format=None) an appropriate sparse matrix format is returned. This choice is subject to change.

See Also -------- diags : more convenient form of this function dia_matrix : the sparse DIAgonal format.

Examples -------- >>> from scipy.sparse import spdiags >>> data = np.array([1, 2, 3, 4], [1, 2, 3, 4], [1, 2, 3, 4]) >>> diags = np.array(0, -1, 2) >>> spdiags(data, diags, 4, 4).toarray() array([1, 0, 3, 0], [1, 2, 0, 4], [0, 2, 3, 0], [0, 0, 3, 4])

val upcast : Py.Object.t list -> Py.Object.t

Returns the nearest supported sparse dtype for the combination of one or more types.

upcast(t0, t1, ..., tn) -> T where T is a supported dtype

Examples --------

>>> upcast('int32') <type 'numpy.int32'> >>> upcast('bool') <type 'numpy.bool_'> >>> upcast('int32','float32') <type 'numpy.float64'> >>> upcast('bool',complex,float) <type 'numpy.complex128'>

val vstack : ?format:string -> ?dtype:Np.Dtype.t -> blocks:Py.Object.t -> unit -> Py.Object.t

Stack sparse matrices vertically (row wise)

Parameters ---------- blocks sequence of sparse matrices with compatible shapes format : str, optional sparse format of the result (e.g. 'csr') by default an appropriate sparse matrix format is returned. This choice is subject to change. dtype : dtype, optional The data-type of the output matrix. If not given, the dtype is determined from that of `blocks`.

See Also -------- hstack : stack sparse matrices horizontally (column wise)

Examples -------- >>> from scipy.sparse import coo_matrix, vstack >>> A = coo_matrix([1, 2], [3, 4]) >>> B = coo_matrix([5, 6]) >>> vstack(A, B).toarray() array([1, 2], [3, 4], [5, 6])

OCaml

Innovation. Community. Security.