One-dimensional spline with explicit internal knots.
Fits a spline y = spl(x) of degree `k` to the provided `x`, `y` data. `t` specifies the internal knots of the spline
Parameters ---------- x : (N,) array_like Input dimension of data points -- must be increasing y : (N,) array_like Input dimension of data points t : (M,) array_like interior knots of the spline. Must be in ascending order and::
bbox0
< t0
< ... < t-1
< bbox-1
w : (N,) array_like, optional weights for spline fitting. Must be positive. If None (default), weights are all equal. bbox : (2,) array_like, optional 2-sequence specifying the boundary of the approximation interval. If None (default), ``bbox = x[0], x[-1]
``. k : int, optional Degree of the smoothing spline. Must be 1 <= `k` <= 5. Default is k=3, a cubic spline. ext : int or str, optional Controls the extrapolation mode for elements not in the interval defined by the knot sequence.
* if ext=0 or 'extrapolate', return the extrapolated value. * if ext=1 or 'zeros', return 0 * if ext=2 or 'raise', raise a ValueError * if ext=3 of 'const', return the boundary value.
The default value is 0.
check_finite : bool, optional Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination or non-sensical results) if the inputs do contain infinities or NaNs. Default is False.
Raises ------ ValueError If the interior knots do not satisfy the Schoenberg-Whitney conditions
See Also -------- UnivariateSpline : Superclass -- knots are specified by setting a smoothing condition InterpolatedUnivariateSpline : spline passing through all points splrep : An older, non object-oriented wrapping of FITPACK splev, sproot, splint, spalde BivariateSpline : A similar class for two-dimensional spline interpolation
Notes ----- The number of data points must be larger than the spline degree `k`.
Knots `t` must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points ``xj
`` such that ``tj
< xj
< tj+k+1
``, for ``j=0, 1,...,n-k-2``.
Examples -------- >>> from scipy.interpolate import LSQUnivariateSpline, UnivariateSpline >>> import matplotlib.pyplot as plt >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
Fit a smoothing spline with a pre-defined internal knots:
>>> t = -1, 0, 1
>>> spl = LSQUnivariateSpline(x, y, t)
>>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(x, y, 'ro', ms=5) >>> plt.plot(xs, spl(xs), 'g-', lw=3) >>> plt.show()
Check the knot vector:
>>> spl.get_knots() array(-3., -1., 0., 1., 3.
)
Constructing lsq spline using the knots from another spline:
>>> x = np.arange(10) >>> s = UnivariateSpline(x, x, s=0) >>> s.get_knots() array( 0., 2., 3., 4., 5., 6., 7., 9.
) >>> knt = s.get_knots() >>> s1 = LSQUnivariateSpline(x, x, knt1:-1
) # Chop 1st and last knot >>> s1.get_knots() array( 0., 2., 3., 4., 5., 6., 7., 9.
)