Matrix or vector norm.
This function is able to return one of eight different matrix norms, or one of an infinite number of vector norms (described below), depending on the value of the ``ord`` parameter.
Parameters ---------- x : array_like Input array. If `axis` is None, `x` must be 1-D or 2-D, unless `ord` is None. If both `axis` and `ord` are None, the 2-norm of ``x.ravel`` will be returned. ord : non-zero int, inf, -inf, 'fro', 'nuc'
, optional Order of the norm (see table under ``Notes``). inf means numpy's `inf` object. The default is None. axis : None, int, 2-tuple of ints
, optional. If `axis` is an integer, it specifies the axis of `x` along which to compute the vector norms. If `axis` is a 2-tuple, it specifies the axes that hold 2-D matrices, and the matrix norms of these matrices are computed. If `axis` is None then either a vector norm (when `x` is 1-D) or a matrix norm (when `x` is 2-D) is returned. The default is None.
.. versionadded:: 1.8.0
keepdims : bool, optional If this is set to True, the axes which are normed over are left in the result as dimensions with size one. With this option the result will broadcast correctly against the original `x`.
.. versionadded:: 1.10.0
Returns ------- n : float or ndarray Norm of the matrix or vector(s).
Notes ----- For values of ``ord <= 0``, the result is, strictly speaking, not a mathematical 'norm', but it may still be useful for various numerical purposes.
The following norms can be calculated:
===== ============================ ========================== ord norm for matrices norm for vectors ===== ============================ ========================== None Frobenius norm 2-norm 'fro' Frobenius norm -- 'nuc' nuclear norm -- inf max(sum(abs(x), axis=1)) max(abs(x)) -inf min(sum(abs(x), axis=1)) min(abs(x)) 0 -- sum(x != 0) 1 max(sum(abs(x), axis=0)) as below -1 min(sum(abs(x), axis=0)) as below 2 2-norm (largest sing. value) as below -2 smallest singular value as below other -- sum(abs(x)**ord)**(1./ord) ===== ============================ ==========================
The Frobenius norm is given by 1
_:
:math:`||A||_F = \sum_{i,j} abs(a_{i,j})^2
^
/2
`
The nuclear norm is the sum of the singular values.
References ---------- .. 1
G. H. Golub and C. F. Van Loan, *Matrix Computations*, Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
Examples -------- >>> from numpy import linalg as LA >>> a = np.arange(9) - 4 >>> a array(-4, -3, -2, ..., 2, 3, 4
) >>> b = a.reshape((3, 3)) >>> b array([-4, -3, -2],
[-1, 0, 1],
[ 2, 3, 4]
)
>>> LA.norm(a) 7.745966692414834 >>> LA.norm(b) 7.745966692414834 >>> LA.norm(b, 'fro') 7.745966692414834 >>> LA.norm(a, np.inf) 4.0 >>> LA.norm(b, np.inf) 9.0 >>> LA.norm(a, -np.inf) 0.0 >>> LA.norm(b, -np.inf) 2.0
>>> LA.norm(a, 1) 20.0 >>> LA.norm(b, 1) 7.0 >>> LA.norm(a, -1) -4.6566128774142013e-010 >>> LA.norm(b, -1) 6.0 >>> LA.norm(a, 2) 7.745966692414834 >>> LA.norm(b, 2) 7.3484692283495345
>>> LA.norm(a, -2) 0.0 >>> LA.norm(b, -2) 1.8570331885190563e-016 # may vary >>> LA.norm(a, 3) 5.8480354764257312 # may vary >>> LA.norm(a, -3) 0.0
Using the `axis` argument to compute vector norms:
>>> c = np.array([ 1, 2, 3],
... [-1, 1, 4]
) >>> LA.norm(c, axis=0) array( 1.41421356, 2.23606798, 5.
) >>> LA.norm(c, axis=1) array( 3.74165739, 4.24264069
) >>> LA.norm(c, ord=1, axis=1) array( 6., 6.
)
Using the `axis` argument to compute matrix norms:
>>> m = np.arange(8).reshape(2,2,2) >>> LA.norm(m, axis=(1,2)) array( 3.74165739, 11.22497216
) >>> LA.norm(m0, :, :
), LA.norm(m1, :, :
) (3.7416573867739413, 11.224972160321824)