package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `KrylovJacobian
]
type t = [ `KrylovJacobian | `Object ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val create : ?rdiff:Py.Object.t -> ?method_: [ `Cgs | `Lgmres | `Gmres | `Bicgstab | `Minres | `Callable of Py.Object.t ] -> ?inner_maxiter:Py.Object.t -> ?inner_M:Py.Object.t -> ?outer_k:int -> ?kw:(string * Py.Object.t) list -> unit -> t

Find a root of a function, using Krylov approximation for inverse Jacobian.

This method is suitable for solving large-scale problems.

Parameters ---------- %(params_basic)s rdiff : float, optional Relative step size to use in numerical differentiation. method : 'lgmres', 'gmres', 'bicgstab', 'cgs', 'minres' or function Krylov method to use to approximate the Jacobian. Can be a string, or a function implementing the same interface as the iterative solvers in `scipy.sparse.linalg`.

The default is `scipy.sparse.linalg.lgmres`. inner_M : LinearOperator or InverseJacobian Preconditioner for the inner Krylov iteration. Note that you can use also inverse Jacobians as (adaptive) preconditioners. For example,

>>> from scipy.optimize.nonlin import BroydenFirst, KrylovJacobian >>> from scipy.optimize.nonlin import InverseJacobian >>> jac = BroydenFirst() >>> kjac = KrylovJacobian(inner_M=InverseJacobian(jac))

If the preconditioner has a method named 'update', it will be called as ``update(x, f)`` after each nonlinear step, with ``x`` giving the current point, and ``f`` the current function value. inner_tol, inner_maxiter, ... Parameters to pass on to the \'inner\' Krylov solver. See `scipy.sparse.linalg.gmres` for details. outer_k : int, optional Size of the subspace kept across LGMRES nonlinear iterations. See `scipy.sparse.linalg.lgmres` for details. %(params_extra)s

See Also -------- root : Interface to root finding algorithms for multivariate functions. See ``method=='krylov'`` in particular. scipy.sparse.linalg.gmres scipy.sparse.linalg.lgmres

Notes ----- This function implements a Newton-Krylov solver. The basic idea is to compute the inverse of the Jacobian with an iterative Krylov method. These methods require only evaluating the Jacobian-vector products, which are conveniently approximated by a finite difference:

.. math:: J v \approx (f(x + \omega*v/|v|) - f(x)) / \omega

Due to the use of iterative matrix inverses, these methods can deal with large nonlinear problems.

SciPy's `scipy.sparse.linalg` module offers a selection of Krylov solvers to choose from. The default here is `lgmres`, which is a variant of restarted GMRES iteration that reuses some of the information obtained in the previous Newton steps to invert Jacobians in subsequent steps.

For a review on Newton-Krylov methods, see for example 1_, and for the LGMRES sparse inverse method, see 2_.

References ---------- .. 1 D.A. Knoll and D.E. Keyes, J. Comp. Phys. 193, 357 (2004). :doi:`10.1016/j.jcp.2003.08.010` .. 2 A.H. Baker and E.R. Jessup and T. Manteuffel, SIAM J. Matrix Anal. Appl. 26, 962 (2005). :doi:`10.1137/S0895479803422014`

val aspreconditioner : [> tag ] Obj.t -> Py.Object.t

None

val matvec : v:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

None

val setup : x:Py.Object.t -> f:Py.Object.t -> func:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

None

val solve : ?tol:Py.Object.t -> rhs:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

None

val update : x:Py.Object.t -> f:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

None

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.