package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val get_py : string -> Py.Object.t

Get an attribute of this module as a Py.Object.t. This is useful to pass a Python function to another function.

val asarray : ?dtype:Np.Dtype.t -> ?order:[ `F | `C ] -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Convert the input to an array.

Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. dtype : data-type, optional By default, the data-type is inferred from the input data. order : 'C', 'F', optional Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to 'C'.

Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray with matching dtype and order. If `a` is a subclass of ndarray, a base class ndarray is returned.

See Also -------- asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. asarray_chkfinite : Similar function which checks input for NaNs and Infs. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions.

Examples -------- Convert a list into an array:

>>> a = 1, 2 >>> np.asarray(a) array(1, 2)

Existing arrays are not copied:

>>> a = np.array(1, 2) >>> np.asarray(a) is a True

If `dtype` is set, array is copied only if dtype does not match:

>>> a = np.array(1, 2, dtype=np.float32) >>> np.asarray(a, dtype=np.float32) is a True >>> np.asarray(a, dtype=np.float64) is a False

Contrary to `asanyarray`, ndarray subclasses are not passed through:

>>> issubclass(np.recarray, np.ndarray) True >>> a = np.array((1.0, 2), (3.0, 4), dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True

val chirp : ?method_:[ `Linear | `Quadratic | `Logarithmic | `Hyperbolic ] -> ?phi:float -> ?vertex_zero:bool -> t:[> `Ndarray ] Np.Obj.t -> f0:float -> t1:float -> f1:float -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Frequency-swept cosine generator.

In the following, 'Hz' should be interpreted as 'cycles per unit'; there is no requirement here that the unit is one second. The important distinction is that the units of rotation are cycles, not radians. Likewise, `t` could be a measurement of space instead of time.

Parameters ---------- t : array_like Times at which to evaluate the waveform. f0 : float Frequency (e.g. Hz) at time t=0. t1 : float Time at which `f1` is specified. f1 : float Frequency (e.g. Hz) of the waveform at time `t1`. method : 'linear', 'quadratic', 'logarithmic', 'hyperbolic', optional Kind of frequency sweep. If not given, `linear` is assumed. See Notes below for more details. phi : float, optional Phase offset, in degrees. Default is 0. vertex_zero : bool, optional This parameter is only used when `method` is 'quadratic'. It determines whether the vertex of the parabola that is the graph of the frequency is at t=0 or t=t1.

Returns ------- y : ndarray A numpy array containing the signal evaluated at `t` with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)`` where `phase` is the integral (from 0 to `t`) of ``2*pi*f(t)``. ``f(t)`` is defined below.

See Also -------- sweep_poly

Notes ----- There are four options for the `method`. The following formulas give the instantaneous frequency (in Hz) of the signal generated by `chirp()`. For convenience, the shorter names shown below may also be used.

linear, lin, li:

``f(t) = f0 + (f1 - f0) * t / t1``

quadratic, quad, q:

The graph of the frequency f(t) is a parabola through (0, f0) and (t1, f1). By default, the vertex of the parabola is at (0, f0). If `vertex_zero` is False, then the vertex is at (t1, f1). The formula is:

if vertex_zero is True:

``f(t) = f0 + (f1 - f0) * t**2 / t1**2``

else:

``f(t) = f1 - (f1 - f0) * (t1 - t)**2 / t1**2``

To use a more general quadratic function, or an arbitrary polynomial, use the function `scipy.signal.sweep_poly`.

logarithmic, log, lo:

``f(t) = f0 * (f1/f0)**(t/t1)``

f0 and f1 must be nonzero and have the same sign.

This signal is also known as a geometric or exponential chirp.

hyperbolic, hyp:

``f(t) = f0*f1*t1 / ((f0 - f1)*t + f1*t1)``

f0 and f1 must be nonzero.

Examples -------- The following will be used in the examples:

>>> from scipy.signal import chirp, spectrogram >>> import matplotlib.pyplot as plt

For the first example, we'll plot the waveform for a linear chirp from 6 Hz to 1 Hz over 10 seconds:

>>> t = np.linspace(0, 10, 5001) >>> w = chirp(t, f0=6, f1=1, t1=10, method='linear') >>> plt.plot(t, w) >>> plt.title('Linear Chirp, f(0)=6, f(10)=1') >>> plt.xlabel('t (sec)') >>> plt.show()

For the remaining examples, we'll use higher frequency ranges, and demonstrate the result using `scipy.signal.spectrogram`. We'll use a 10 second interval sampled at 8000 Hz.

>>> fs = 8000 >>> T = 10 >>> t = np.linspace(0, T, T*fs, endpoint=False)

Quadratic chirp from 1500 Hz to 250 Hz over 10 seconds (vertex of the parabolic curve of the frequency is at t=0):

>>> w = chirp(t, f0=1500, f1=250, t1=10, method='quadratic') >>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512, ... nfft=2048) >>> plt.pcolormesh(tt, ff:513, Sxx:513, cmap='gray_r') >>> plt.title('Quadratic Chirp, f(0)=1500, f(10)=250') >>> plt.xlabel('t (sec)') >>> plt.ylabel('Frequency (Hz)') >>> plt.grid() >>> plt.show()

Quadratic chirp from 1500 Hz to 250 Hz over 10 seconds (vertex of the parabolic curve of the frequency is at t=10):

>>> w = chirp(t, f0=1500, f1=250, t1=10, method='quadratic', ... vertex_zero=False) >>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512, ... nfft=2048) >>> plt.pcolormesh(tt, ff:513, Sxx:513, cmap='gray_r') >>> plt.title('Quadratic Chirp, f(0)=1500, f(10)=250\n' + ... '(vertex_zero=False)') >>> plt.xlabel('t (sec)') >>> plt.ylabel('Frequency (Hz)') >>> plt.grid() >>> plt.show()

Logarithmic chirp from 1500 Hz to 250 Hz over 10 seconds:

>>> w = chirp(t, f0=1500, f1=250, t1=10, method='logarithmic') >>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512, ... nfft=2048) >>> plt.pcolormesh(tt, ff:513, Sxx:513, cmap='gray_r') >>> plt.title('Logarithmic Chirp, f(0)=1500, f(10)=250') >>> plt.xlabel('t (sec)') >>> plt.ylabel('Frequency (Hz)') >>> plt.grid() >>> plt.show()

Hyperbolic chirp from 1500 Hz to 250 Hz over 10 seconds:

>>> w = chirp(t, f0=1500, f1=250, t1=10, method='hyperbolic') >>> ff, tt, Sxx = spectrogram(w, fs=fs, noverlap=256, nperseg=512, ... nfft=2048) >>> plt.pcolormesh(tt, ff:513, Sxx:513, cmap='gray_r') >>> plt.title('Hyperbolic Chirp, f(0)=1500, f(10)=250') >>> plt.xlabel('t (sec)') >>> plt.ylabel('Frequency (Hz)') >>> plt.grid() >>> plt.show()

val cos : ?out: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_ndarray_and_None of Py.Object.t ] -> ?where:[> `Ndarray ] Np.Obj.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

cos(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature, extobj)

Cosine element-wise.

Parameters ---------- x : array_like Input array in radians. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.

Returns ------- y : ndarray The corresponding cosine values. This is a scalar if `x` is a scalar.

Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples)

References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples -------- >>> np.cos(np.array(0, np.pi/2, np.pi)) array( 1.00000000e+00, 6.12303177e-17, -1.00000000e+00) >>> >>> # Example of providing the optional output parameter >>> out1 = np.array(0, dtype='d') >>> out2 = np.cos(0.1, out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File '<stdin>', line 1, in <module> ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

val exp : ?out: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_ndarray_and_None of Py.Object.t ] -> ?where:[> `Ndarray ] Np.Obj.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

exp(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature, extobj)

Calculate the exponential of all elements in the input array.

Parameters ---------- x : array_like Input values. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.

Returns ------- out : ndarray or scalar Output array, element-wise exponential of `x`. This is a scalar if `x` is a scalar.

See Also -------- expm1 : Calculate ``exp(x) - 1`` for all elements in the array. exp2 : Calculate ``2**x`` for all elements in the array.

Notes ----- The irrational number ``e`` is also known as Euler's number. It is approximately 2.718281, and is the base of the natural logarithm, ``ln`` (this means that, if :math:`x = \ln y = \log_e y`, then :math:`e^x = y`. For real input, ``exp(x)`` is always positive.

For complex arguments, ``x = a + ib``, we can write :math:`e^x = e^a e^b`. The first term, :math:`e^a`, is already known (it is the real argument, described above). The second term, :math:`e^b`, is :math:`\cos b + i \sin b`, a function with magnitude 1 and a periodic phase.

References ---------- .. 1 Wikipedia, 'Exponential function', https://en.wikipedia.org/wiki/Exponential_function .. 2 M. Abramovitz and I. A. Stegun, 'Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,' Dover, 1964, p. 69, http://www.math.sfu.ca/~cbm/aands/page_69.htm

Examples -------- Plot the magnitude and phase of ``exp(x)`` in the complex plane:

>>> import matplotlib.pyplot as plt

>>> x = np.linspace(-2*np.pi, 2*np.pi, 100) >>> xx = x + 1j * x:, np.newaxis # a + ib over complex plane >>> out = np.exp(xx)

>>> plt.subplot(121) >>> plt.imshow(np.abs(out), ... extent=-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi, cmap='gray') >>> plt.title('Magnitude of exp(x)')

>>> plt.subplot(122) >>> plt.imshow(np.angle(out), ... extent=-2*np.pi, 2*np.pi, -2*np.pi, 2*np.pi, cmap='hsv') >>> plt.title('Phase (angle) of exp(x)') >>> plt.show()

val extract : condition:[> `Ndarray ] Np.Obj.t -> arr:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return the elements of an array that satisfy some condition.

This is equivalent to ``np.compress(ravel(condition), ravel(arr))``. If `condition` is boolean ``np.extract`` is equivalent to ``arrcondition``.

Note that `place` does the exact opposite of `extract`.

Parameters ---------- condition : array_like An array whose nonzero or True entries indicate the elements of `arr` to extract. arr : array_like Input array of the same size as `condition`.

Returns ------- extract : ndarray Rank 1 array of values from `arr` where `condition` is True.

See Also -------- take, put, copyto, compress, place

Examples -------- >>> arr = np.arange(12).reshape((3, 4)) >>> arr array([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> condition = np.mod(arr, 3)==0 >>> condition array([ True, False, False, True], [False, False, True, False], [False, True, False, False]) >>> np.extract(condition, arr) array(0, 3, 6, 9)

If `condition` is boolean:

>>> arrcondition array(0, 3, 6, 9)

val gausspulse : ?fc:int -> ?bw:float -> ?bwr:float -> ?tpr:float -> ?retquad:bool -> ?retenv:bool -> t:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `The_string_cutoff_ of Py.Object.t ] -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return a Gaussian modulated sinusoid:

``exp(-a t^2) exp(1j*2*pi*fc*t).``

If `retquad` is True, then return the real and imaginary parts (in-phase and quadrature). If `retenv` is True, then return the envelope (unmodulated signal). Otherwise, return the real part of the modulated sinusoid.

Parameters ---------- t : ndarray or the string 'cutoff' Input array. fc : int, optional Center frequency (e.g. Hz). Default is 1000. bw : float, optional Fractional bandwidth in frequency domain of pulse (e.g. Hz). Default is 0.5. bwr : float, optional Reference level at which fractional bandwidth is calculated (dB). Default is -6. tpr : float, optional If `t` is 'cutoff', then the function returns the cutoff time for when the pulse amplitude falls below `tpr` (in dB). Default is -60. retquad : bool, optional If True, return the quadrature (imaginary) as well as the real part of the signal. Default is False. retenv : bool, optional If True, return the envelope of the signal. Default is False.

Returns ------- yI : ndarray Real part of signal. Always returned. yQ : ndarray Imaginary part of signal. Only returned if `retquad` is True. yenv : ndarray Envelope of signal. Only returned if `retenv` is True.

See Also -------- scipy.signal.morlet

Examples -------- Plot real component, imaginary component, and envelope for a 5 Hz pulse, sampled at 100 Hz for 2 seconds:

>>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(-1, 1, 2 * 100, endpoint=False) >>> i, q, e = signal.gausspulse(t, fc=5, retquad=True, retenv=True) >>> plt.plot(t, i, t, q, t, e, '--')

val log : ?out: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_ndarray_and_None of Py.Object.t ] -> ?where:[> `Ndarray ] Np.Obj.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

log(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature, extobj)

Natural logarithm, element-wise.

The natural logarithm `log` is the inverse of the exponential function, so that `log(exp(x)) = x`. The natural logarithm is logarithm in base `e`.

Parameters ---------- x : array_like Input value. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.

Returns ------- y : ndarray The natural logarithm of `x`, element-wise. This is a scalar if `x` is a scalar.

See Also -------- log10, log2, log1p, emath.log

Notes ----- Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = x`. The convention is to return the `z` whose imaginary part lies in `-pi, pi`.

For real-valued input data types, `log` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag.

For complex-valued input, `log` is a complex analytical function that has a branch cut `-inf, 0` and is continuous from above on it. `log` handles the floating-point negative zero as an infinitesimal negative number, conforming to the C99 standard.

References ---------- .. 1 M. Abramowitz and I.A. Stegun, 'Handbook of Mathematical Functions', 10th printing, 1964, pp. 67. http://www.math.sfu.ca/~cbm/aands/ .. 2 Wikipedia, 'Logarithm'. https://en.wikipedia.org/wiki/Logarithm

Examples -------- >>> np.log(1, np.e, np.e**2, 0) array( 0., 1., 2., -Inf)

val mod_ : ?out: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_ndarray_and_None of Py.Object.t ] -> ?where:[> `Ndarray ] Np.Obj.t -> x:Py.Object.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

remainder(x1, x2, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature, extobj)

Return element-wise remainder of division.

Computes the remainder complementary to the `floor_divide` function. It is equivalent to the Python modulus operator``x1 % x2`` and has the same sign as the divisor `x2`. The MATLAB function equivalent to ``np.remainder`` is ``mod``.

.. warning::

This should not be confused with:

* Python 3.7's `math.remainder` and C's ``remainder``, which computes the IEEE remainder, which are the complement to ``round(x1 / x2)``. * The MATLAB ``rem`` function and or the C ``%`` operator which is the complement to ``int(x1 / x2)``.

Parameters ---------- x1 : array_like Dividend array. x2 : array_like Divisor array. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.

Returns ------- y : ndarray The element-wise remainder of the quotient ``floor_divide(x1, x2)``. This is a scalar if both `x1` and `x2` are scalars.

See Also -------- floor_divide : Equivalent of Python ``//`` operator. divmod : Simultaneous floor division and remainder. fmod : Equivalent of the MATLAB ``rem`` function. divide, floor

Notes ----- Returns 0 when `x2` is 0 and both `x1` and `x2` are (arrays of) integers. ``mod`` is an alias of ``remainder``.

Examples -------- >>> np.remainder(4, 7, 2, 3) array(0, 1) >>> np.remainder(np.arange(7), 5) array(0, 1, 2, 3, 4, 0, 1)

val place : arr:[> `Ndarray ] Np.Obj.t -> mask:[> `Ndarray ] Np.Obj.t -> vals:Py.Object.t -> unit -> Py.Object.t

Change elements of an array based on conditional and input values.

Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that `place` uses the first N elements of `vals`, where N is the number of True values in `mask`, while `copyto` uses the elements where `mask` is True.

Note that `extract` does the exact opposite of `place`.

Parameters ---------- arr : ndarray Array to put data into. mask : array_like Boolean mask array. Must have the same size as `a`. vals : 1-D sequence Values to put into `a`. Only the first N elements are used, where N is the number of True values in `mask`. If `vals` is smaller than N, it will be repeated, and if elements of `a` are to be masked, this sequence must be non-empty.

See Also -------- copyto, put, take, extract

Examples -------- >>> arr = np.arange(6).reshape(2, 3) >>> np.place(arr, arr>2, 44, 55) >>> arr array([ 0, 1, 2], [44, 55, 44])

val polyint : ?m:int -> ?k: [ `S of string | `F of float | `I of int | `List_of_m_scalars of Py.Object.t | `Bool of bool ] -> p:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `Poly1d of Py.Object.t ] -> unit -> Py.Object.t

Return an antiderivative (indefinite integral) of a polynomial.

The returned order `m` antiderivative `P` of polynomial `p` satisfies :math:`\fracd^mdx^mP(x) = p(x)` and is defined up to `m - 1` integration constants `k`. The constants determine the low-order polynomial part

.. math:: \frack_{m-1

}

!

x^0 + \ldots + \frack_0(m-1)!x^m-1

of `P` so that :math:`P^(j)(0) = k_m-j-1`.

Parameters ---------- p : array_like or poly1d Polynomial to integrate. A sequence is interpreted as polynomial coefficients, see `poly1d`. m : int, optional Order of the antiderivative. (Default: 1) k : list of `m` scalars or scalar, optional Integration constants. They are given in the order of integration: those corresponding to highest-order terms come first.

If ``None`` (default), all constants are assumed to be zero. If `m = 1`, a single scalar can be given instead of a list.

See Also -------- polyder : derivative of a polynomial poly1d.integ : equivalent method

Examples -------- The defining property of the antiderivative:

>>> p = np.poly1d(1,1,1) >>> P = np.polyint(p) >>> P poly1d( 0.33333333, 0.5 , 1. , 0. ) # may vary >>> np.polyder(P) == p True

The integration constants default to zero, but can be specified:

>>> P = np.polyint(p, 3) >>> P(0) 0.0 >>> np.polyder(P)(0) 0.0 >>> np.polyder(P, 2)(0) 0.0 >>> P = np.polyint(p, 3, k=6,5,3) >>> P poly1d( 0.01666667, 0.04166667, 0.16666667, 3. , 5. , 3. ) # may vary

Note that 3 = 6 / 2!, and that the constants are given in the order of integrations. Constant of the highest-order polynomial term comes first:

>>> np.polyder(P, 2)(0) 6.0 >>> np.polyder(P, 1)(0) 5.0 >>> P(0) 3.0

val polyval : p:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `Poly1d_object of Py.Object.t ] -> x:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `Poly1d_object of Py.Object.t ] -> unit -> Py.Object.t

Evaluate a polynomial at specific values.

If `p` is of length N, this function returns the value:

``p0*x**(N-1) + p1*x**(N-2) + ... + pN-2*x + pN-1``

If `x` is a sequence, then `p(x)` is returned for each element of `x`. If `x` is another polynomial then the composite polynomial `p(x(t))` is returned.

Parameters ---------- p : array_like or poly1d object 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term, or an instance of poly1d. x : array_like or poly1d object A number, an array of numbers, or an instance of poly1d, at which to evaluate `p`.

Returns ------- values : ndarray or poly1d If `x` is a poly1d instance, the result is the composition of the two polynomials, i.e., `x` is 'substituted' in `p` and the simplified result is returned. In addition, the type of `x` - array_like or poly1d - governs the type of the output: `x` array_like => `values` array_like, `x` a poly1d object => `values` is also.

See Also -------- poly1d: A polynomial class.

Notes ----- Horner's scheme 1_ is used to evaluate the polynomial. Even so, for polynomials of high degree the values may be inaccurate due to rounding errors. Use carefully.

If `x` is a subtype of `ndarray` the return value will be of the same type.

References ---------- .. 1 I. N. Bronshtein, K. A. Semendyayev, and K. A. Hirsch (Eng. trans. Ed.), *Handbook of Mathematics*, New York, Van Nostrand Reinhold Co., 1985, pg. 720.

Examples -------- >>> np.polyval(3,0,1, 5) # 3 * 5**2 + 0 * 5**1 + 1 76 >>> np.polyval(3,0,1, np.poly1d(5)) poly1d(76.) >>> np.polyval(np.poly1d(3,0,1), 5) 76 >>> np.polyval(np.poly1d(3,0,1), np.poly1d(5)) poly1d(76.)

val sawtooth : ?width:[> `Ndarray ] Np.Obj.t -> t:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return a periodic sawtooth or triangle waveform.

The sawtooth waveform has a period ``2*pi``, rises from -1 to 1 on the interval 0 to ``width*2*pi``, then drops from 1 to -1 on the interval ``width*2*pi`` to ``2*pi``. `width` must be in the interval 0, 1.

Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum.

Parameters ---------- t : array_like Time. width : array_like, optional Width of the rising ramp as a proportion of the total cycle. Default is 1, producing a rising ramp, while 0 produces a falling ramp. `width` = 0.5 produces a triangle wave. If an array, causes wave shape to change over time, and must be the same length as t.

Returns ------- y : ndarray Output array containing the sawtooth waveform.

Examples -------- A 5 Hz waveform sampled at 500 Hz for 1 second:

>>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(0, 1, 500) >>> plt.plot(t, signal.sawtooth(2 * np.pi * 5 * t))

val sin : ?out: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_ndarray_and_None of Py.Object.t ] -> ?where:[> `Ndarray ] Np.Obj.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

sin(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature, extobj)

Trigonometric sine, element-wise.

Parameters ---------- x : array_like Angle, in radians (:math:`2 \pi` rad equals 360 degrees). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.

Returns ------- y : array_like The sine of each element of x. This is a scalar if `x` is a scalar.

See Also -------- arcsin, sinh, cos

Notes ----- The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider a circle of radius 1 centered on the origin. A ray comes in from the :math:`+x` axis, makes an angle at the origin (measured counter-clockwise from that axis), and departs from the origin. The :math:`y` coordinate of the outgoing ray's intersection with the unit circle is the sine of that angle. It ranges from -1 for :math:`x=3\pi / 2` to +1 for :math:`\pi / 2.` The function has zeroes where the angle is a multiple of :math:`\pi`. Sines of angles between :math:`\pi` and :math:`2\pi` are negative. The numerous properties of the sine and related functions are included in any standard trigonometry text.

Examples -------- Print sine of one angle:

>>> np.sin(np.pi/2.) 1.0

Print sines of an array of angles given in degrees:

>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. ) array( 0. , 0.5 , 0.70710678, 0.8660254 , 1. )

Plot the sine function:

>>> import matplotlib.pylab as plt >>> x = np.linspace(-np.pi, np.pi, 201) >>> plt.plot(x, np.sin(x)) >>> plt.xlabel('Angle rad') >>> plt.ylabel('sin(x)') >>> plt.axis('tight') >>> plt.show()

val sqrt : ?out: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_ndarray_and_None of Py.Object.t ] -> ?where:[> `Ndarray ] Np.Obj.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

sqrt(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature, extobj)

Return the non-negative square-root of an array, element-wise.

Parameters ---------- x : array_like The values whose square-roots are required. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.

Returns ------- y : ndarray An array of the same shape as `x`, containing the positive square-root of each element in `x`. If any element in `x` is complex, a complex array is returned (and the square-roots of negative reals are calculated). If all of the elements in `x` are real, so is `y`, with negative elements returning ``nan``. If `out` was provided, `y` is a reference to it. This is a scalar if `x` is a scalar.

See Also -------- lib.scimath.sqrt A version which returns complex numbers when given negative reals.

Notes ----- *sqrt* has--consistent with common convention--as its branch cut the real 'interval' `-inf`, 0), and is continuous from above on it. A branch cut is a curve in the complex plane across which a given complex function fails to be continuous. Examples -------- >>> np.sqrt([1,4,9]) array([ 1., 2., 3.]) >>> np.sqrt([4, -1, -3+4J]) array([ 2.+0.j, 0.+1.j, 1.+2.j]) >>> np.sqrt([4, -1, np.inf]) array([ 2., nan, inf])

val square : ?duty:[> `Ndarray ] Np.Obj.t -> t:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return a periodic square-wave waveform.

The square wave has a period ``2*pi``, has value +1 from 0 to ``2*pi*duty`` and -1 from ``2*pi*duty`` to ``2*pi``. `duty` must be in the interval 0,1.

Note that this is not band-limited. It produces an infinite number of harmonics, which are aliased back and forth across the frequency spectrum.

Parameters ---------- t : array_like The input time array. duty : array_like, optional Duty cycle. Default is 0.5 (50% duty cycle). If an array, causes wave shape to change over time, and must be the same length as t.

Returns ------- y : ndarray Output array containing the square waveform.

Examples -------- A 5 Hz waveform sampled at 500 Hz for 1 second:

>>> from scipy import signal >>> import matplotlib.pyplot as plt >>> t = np.linspace(0, 1, 500, endpoint=False) >>> plt.plot(t, signal.square(2 * np.pi * 5 * t)) >>> plt.ylim(-2, 2)

A pulse-width modulated sine wave:

>>> plt.figure() >>> sig = np.sin(2 * np.pi * t) >>> pwm = signal.square(2 * np.pi * 30 * t, duty=(sig + 1)/2) >>> plt.subplot(2, 1, 1) >>> plt.plot(t, sig) >>> plt.subplot(2, 1, 2) >>> plt.plot(t, pwm) >>> plt.ylim(-1.5, 1.5)

val sweep_poly : ?phi:float -> t:[> `Ndarray ] Np.Obj.t -> poly:Py.Object.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Frequency-swept cosine generator, with a time-dependent frequency.

This function generates a sinusoidal function whose instantaneous frequency varies with time. The frequency at time `t` is given by the polynomial `poly`.

Parameters ---------- t : ndarray Times at which to evaluate the waveform. poly : 1-D array_like or instance of numpy.poly1d The desired frequency expressed as a polynomial. If `poly` is a list or ndarray of length n, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is

``f(t) = poly0*t**(n-1) + poly1*t**(n-2) + ... + polyn-1``

If `poly` is an instance of numpy.poly1d, then the instantaneous frequency is

``f(t) = poly(t)``

phi : float, optional Phase offset, in degrees, Default: 0.

Returns ------- sweep_poly : ndarray A numpy array containing the signal evaluated at `t` with the requested time-varying frequency. More precisely, the function returns ``cos(phase + (pi/180)*phi)``, where `phase` is the integral (from 0 to t) of ``2 * pi * f(t)``; ``f(t)`` is defined above.

See Also -------- chirp

Notes ----- .. versionadded:: 0.8.0

If `poly` is a list or ndarray of length `n`, then the elements of `poly` are the coefficients of the polynomial, and the instantaneous frequency is:

``f(t) = poly0*t**(n-1) + poly1*t**(n-2) + ... + polyn-1``

If `poly` is an instance of `numpy.poly1d`, then the instantaneous frequency is:

``f(t) = poly(t)``

Finally, the output `s` is:

``cos(phase + (pi/180)*phi)``

where `phase` is the integral from 0 to `t` of ``2 * pi * f(t)``, ``f(t)`` as defined above.

Examples -------- Compute the waveform with instantaneous frequency::

f(t) = 0.025*t**3 - 0.36*t**2 + 1.25*t + 2

over the interval 0 <= t <= 10.

>>> from scipy.signal import sweep_poly >>> p = np.poly1d(0.025, -0.36, 1.25, 2.0) >>> t = np.linspace(0, 10, 5001) >>> w = sweep_poly(t, p)

Plot it:

>>> import matplotlib.pyplot as plt >>> plt.subplot(2, 1, 1) >>> plt.plot(t, w) >>> plt.title('Sweep Poly\nwith frequency ' + ... '$f(t) = 0.025t^3 - 0.36t^2 + 1.25t + 2$') >>> plt.subplot(2, 1, 2) >>> plt.plot(t, p(t), 'r', label='f(t)') >>> plt.legend() >>> plt.xlabel('t') >>> plt.tight_layout() >>> plt.show()

val unit_impulse : ?idx:[ `I of int | `Tuple_of_int of Py.Object.t | `Mid ] -> ?dtype:Np.Dtype.t -> shape:[ `I of int | `Tuple_of_int of Py.Object.t ] -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Unit impulse signal (discrete delta function) or unit basis vector.

Parameters ---------- shape : int or tuple of int Number of samples in the output (1-D), or a tuple that represents the shape of the output (N-D). idx : None or int or tuple of int or 'mid', optional Index at which the value is 1. If None, defaults to the 0th element. If ``idx='mid'``, the impulse will be centered at ``shape // 2`` in all dimensions. If an int, the impulse will be at `idx` in all dimensions. dtype : data-type, optional The desired data-type for the array, e.g., ``numpy.int8``. Default is ``numpy.float64``.

Returns ------- y : ndarray Output array containing an impulse signal.

Notes ----- The 1D case is also known as the Kronecker delta.

.. versionadded:: 0.19.0

Examples -------- An impulse at the 0th element (:math:`\deltan`):

>>> from scipy import signal >>> signal.unit_impulse(8) array( 1., 0., 0., 0., 0., 0., 0., 0.)

Impulse offset by 2 samples (:math:`\deltan-2`):

>>> signal.unit_impulse(7, 2) array( 0., 0., 1., 0., 0., 0., 0.)

2-dimensional impulse, centered:

>>> signal.unit_impulse((3, 3), 'mid') array([ 0., 0., 0.], [ 0., 1., 0.], [ 0., 0., 0.])

Impulse at (2, 2), using broadcasting:

>>> signal.unit_impulse((4, 4), 2) array([ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 1., 0.], [ 0., 0., 0., 0.])

Plot the impulse response of a 4th-order Butterworth lowpass filter:

>>> imp = signal.unit_impulse(100, 'mid') >>> b, a = signal.butter(4, 0.2) >>> response = signal.lfilter(b, a, imp)

>>> import matplotlib.pyplot as plt >>> plt.plot(np.arange(-50, 50), imp) >>> plt.plot(np.arange(-50, 50), response) >>> plt.margins(0.1, 0.1) >>> plt.xlabel('Time samples') >>> plt.ylabel('Amplitude') >>> plt.grid(True) >>> plt.show()

val zeros : ?dtype:Np.Dtype.t -> ?order:[ `C | `F ] -> shape:int list -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

zeros(shape, dtype=float, order='C')

Return a new array of given shape and type, filled with zeros.

Parameters ---------- shape : int or tuple of ints Shape of the new array, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional The desired data-type for the array, e.g., `numpy.int8`. Default is `numpy.float64`. order : 'C', 'F', optional, default: 'C' Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.

Returns ------- out : ndarray Array of zeros with the given shape, dtype, and order.

See Also -------- zeros_like : Return an array of zeros with shape and type of input. empty : Return a new uninitialized array. ones : Return a new array setting values to one. full : Return a new array of given shape filled with value.

Examples -------- >>> np.zeros(5) array( 0., 0., 0., 0., 0.)

>>> np.zeros((5,), dtype=int) array(0, 0, 0, 0, 0)

>>> np.zeros((2, 1)) array([ 0.], [ 0.])

>>> s = (2,2) >>> np.zeros(s) array([ 0., 0.], [ 0., 0.])

>>> np.zeros((2,), dtype=('x', 'i4'), ('y', 'i4')) # custom dtype array((0, 0), (0, 0), dtype=('x', '<i4'), ('y', '<i4'))

OCaml

Innovation. Community. Security.