Compressed Sparse Column matrix
This can be instantiated in several ways:
csc_matrix(D) with a dense matrix or rank-2 ndarray D
csc_matrix(S) with another sparse matrix S (equivalent to S.tocsc())
csc_matrix((M, N), dtype) to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.
csc_matrix((data, (row_ind, col_ind)), shape=(M, N)) where ``data``, ``row_ind`` and ``col_ind`` satisfy the relationship ``arow_ind[k], col_ind[k] = datak``.
csc_matrix((data, indices, indptr), shape=(M, N)) is the standard CSC representation where the row indices for column i are stored in ``indicesindptr[i]:indptr[i+1]`` and their corresponding values are stored in ``dataindptr[i]:indptr[i+1]``. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Attributes ---------- dtype : dtype Data type of the matrix shape : 2-tuple Shape of the matrix ndim : int Number of dimensions (this is always 2) nnz Number of stored values, including explicit zeros data Data array of the matrix indices CSC format index array indptr CSC format index pointer array has_sorted_indices Whether indices are sorted
Notes -----
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Advantages of the CSC format
- efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
- efficient column slicing
- fast matrix vector products (CSR, BSR may be faster)
Disadvantages of the CSC format
- slow row slicing operations (consider CSR)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Examples --------
>>> import numpy as np >>> from scipy.sparse import csc_matrix >>> csc_matrix((3, 4), dtype=np.int8).toarray() array([0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], dtype=int8)
>>> row = np.array(0, 2, 2, 0, 1, 2) >>> col = np.array(0, 0, 1, 2, 2, 2) >>> data = np.array(1, 2, 3, 4, 5, 6) >>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray() array([1, 0, 4], [0, 0, 5], [2, 3, 6])
>>> indptr = np.array(0, 2, 3, 6) >>> indices = np.array(0, 2, 2, 0, 1, 2) >>> data = np.array(1, 2, 3, 4, 5, 6) >>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray() array([1, 0, 4], [0, 0, 5], [2, 3, 6])