package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val get_py : string -> Py.Object.t

Get an attribute of this module as a Py.Object.t. This is useful to pass a Python function to another function.

val fourier_ellipsoid : ?n:int -> ?axis:int -> ?output:[> `Ndarray ] Np.Obj.t -> input:[> `Ndarray ] Np.Obj.t -> size:[ `Sequence of Py.Object.t | `F of float ] -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Multi-dimensional ellipsoid fourier filter.

The array is multiplied with the fourier transform of a ellipsoid of given sizes.

Parameters ---------- input : array_like The input array. size : float or sequence The size of the box used for filtering. If a float, `size` is the same for all axes. If a sequence, `size` has to contain one value for each axis. n : int, optional If `n` is negative (default), then the input is assumed to be the result of a complex fft. If `n` is larger than or equal to zero, the input is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction. axis : int, optional The axis of the real transform. output : ndarray, optional If given, the result of filtering the input is placed in this array. None is returned in this case.

Returns ------- fourier_ellipsoid : ndarray The filtered input.

Notes ----- This function is implemented for arrays of rank 1, 2, or 3.

Examples -------- >>> from scipy import ndimage, misc >>> import numpy.fft >>> import matplotlib.pyplot as plt >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> plt.gray() # show the filtered result in grayscale >>> ascent = misc.ascent() >>> input_ = numpy.fft.fft2(ascent) >>> result = ndimage.fourier_ellipsoid(input_, size=20) >>> result = numpy.fft.ifft2(result) >>> ax1.imshow(ascent) >>> ax2.imshow(result.real) # the imaginary part is an artifact >>> plt.show()

val fourier_gaussian : ?n:int -> ?axis:int -> ?output:[> `Ndarray ] Np.Obj.t -> input:[> `Ndarray ] Np.Obj.t -> sigma:[ `Sequence of Py.Object.t | `F of float ] -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Multi-dimensional Gaussian fourier filter.

The array is multiplied with the fourier transform of a Gaussian kernel.

Parameters ---------- input : array_like The input array. sigma : float or sequence The sigma of the Gaussian kernel. If a float, `sigma` is the same for all axes. If a sequence, `sigma` has to contain one value for each axis. n : int, optional If `n` is negative (default), then the input is assumed to be the result of a complex fft. If `n` is larger than or equal to zero, the input is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction. axis : int, optional The axis of the real transform. output : ndarray, optional If given, the result of filtering the input is placed in this array. None is returned in this case.

Returns ------- fourier_gaussian : ndarray The filtered input.

Examples -------- >>> from scipy import ndimage, misc >>> import numpy.fft >>> import matplotlib.pyplot as plt >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> plt.gray() # show the filtered result in grayscale >>> ascent = misc.ascent() >>> input_ = numpy.fft.fft2(ascent) >>> result = ndimage.fourier_gaussian(input_, sigma=4) >>> result = numpy.fft.ifft2(result) >>> ax1.imshow(ascent) >>> ax2.imshow(result.real) # the imaginary part is an artifact >>> plt.show()

val fourier_shift : ?n:int -> ?axis:int -> ?output:[> `Ndarray ] Np.Obj.t -> input:[> `Ndarray ] Np.Obj.t -> shift:[ `Sequence of Py.Object.t | `F of float ] -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Multi-dimensional fourier shift filter.

The array is multiplied with the fourier transform of a shift operation.

Parameters ---------- input : array_like The input array. shift : float or sequence The size of the box used for filtering. If a float, `shift` is the same for all axes. If a sequence, `shift` has to contain one value for each axis. n : int, optional If `n` is negative (default), then the input is assumed to be the result of a complex fft. If `n` is larger than or equal to zero, the input is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction. axis : int, optional The axis of the real transform. output : ndarray, optional If given, the result of shifting the input is placed in this array. None is returned in this case.

Returns ------- fourier_shift : ndarray The shifted input.

Examples -------- >>> from scipy import ndimage, misc >>> import matplotlib.pyplot as plt >>> import numpy.fft >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> plt.gray() # show the filtered result in grayscale >>> ascent = misc.ascent() >>> input_ = numpy.fft.fft2(ascent) >>> result = ndimage.fourier_shift(input_, shift=200) >>> result = numpy.fft.ifft2(result) >>> ax1.imshow(ascent) >>> ax2.imshow(result.real) # the imaginary part is an artifact >>> plt.show()

val fourier_uniform : ?n:int -> ?axis:int -> ?output:[> `Ndarray ] Np.Obj.t -> input:[> `Ndarray ] Np.Obj.t -> size:[ `Sequence of Py.Object.t | `F of float ] -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Multi-dimensional uniform fourier filter.

The array is multiplied with the fourier transform of a box of given size.

Parameters ---------- input : array_like The input array. size : float or sequence The size of the box used for filtering. If a float, `size` is the same for all axes. If a sequence, `size` has to contain one value for each axis. n : int, optional If `n` is negative (default), then the input is assumed to be the result of a complex fft. If `n` is larger than or equal to zero, the input is assumed to be the result of a real fft, and `n` gives the length of the array before transformation along the real transform direction. axis : int, optional The axis of the real transform. output : ndarray, optional If given, the result of filtering the input is placed in this array. None is returned in this case.

Returns ------- fourier_uniform : ndarray The filtered input.

Examples -------- >>> from scipy import ndimage, misc >>> import numpy.fft >>> import matplotlib.pyplot as plt >>> fig, (ax1, ax2) = plt.subplots(1, 2) >>> plt.gray() # show the filtered result in grayscale >>> ascent = misc.ascent() >>> input_ = numpy.fft.fft2(ascent) >>> result = ndimage.fourier_uniform(input_, size=20) >>> result = numpy.fft.ifft2(result) >>> ax1.imshow(ascent) >>> ax2.imshow(result.real) # the imaginary part is an artifact >>> plt.show()

OCaml

Innovation. Community. Security.