package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val get_py : string -> Py.Object.t

Get an attribute of this module as a Py.Object.t. This is useful to pass a Python function to another function.

module Intp : sig ... end
module Poly1d : sig ... end
val array : ?dtype:Np.Dtype.t -> ?copy:bool -> ?order:[ `K | `A | `C | `F ] -> ?subok:bool -> ?ndmin:int -> object_:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

array(object, dtype=None, copy=True, order='K', subok=False, ndmin=0)

Create an array.

Parameters ---------- object : array_like An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. dtype : data-type, optional The desired data-type for the array. If not given, then the type will be determined as the minimum type required to hold the objects in the sequence. copy : bool, optional If true (default), then the object is copied. Otherwise, a copy will only be made if __array__ returns a copy, if obj is a nested sequence, or if a copy is needed to satisfy any of the other requirements (`dtype`, `order`, etc.). order : 'K', 'A', 'C', 'F', optional Specify the memory layout of the array. If object is not an array, the newly created array will be in C order (row major) unless 'F' is specified, in which case it will be in Fortran order (column major). If object is an array the following holds.

===== ========= =================================================== order no copy copy=True ===== ========= =================================================== 'K' unchanged F & C order preserved, otherwise most similar order 'A' unchanged F order if input is F and not C, otherwise C order 'C' C order C order 'F' F order F order ===== ========= ===================================================

When ``copy=False`` and a copy is made for other reasons, the result is the same as if ``copy=True``, with some exceptions for `A`, see the Notes section. The default order is 'K'. subok : bool, optional If True, then sub-classes will be passed-through, otherwise the returned array will be forced to be a base-class array (default). ndmin : int, optional Specifies the minimum number of dimensions that the resulting array should have. Ones will be pre-pended to the shape as needed to meet this requirement.

Returns ------- out : ndarray An array object satisfying the specified requirements.

See Also -------- empty_like : Return an empty array with shape and type of input. ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full_like : Return a new array with shape of input filled with value. empty : Return a new uninitialized array. ones : Return a new array setting values to one. zeros : Return a new array setting values to zero. full : Return a new array of given shape filled with value.

Notes ----- When order is 'A' and `object` is an array in neither 'C' nor 'F' order, and a copy is forced by a change in dtype, then the order of the result is not necessarily 'C' as expected. This is likely a bug.

Examples -------- >>> np.array(1, 2, 3) array(1, 2, 3)

Upcasting:

>>> np.array(1, 2, 3.0) array( 1., 2., 3.)

More than one dimension:

>>> np.array([1, 2], [3, 4]) array([1, 2], [3, 4])

Minimum dimensions 2:

>>> np.array(1, 2, 3, ndmin=2) array([1, 2, 3])

Type provided:

>>> np.array(1, 2, 3, dtype=complex) array( 1.+0.j, 2.+0.j, 3.+0.j)

Data-type consisting of more than one element:

>>> x = np.array((1,2),(3,4),dtype=('a','<i4'),('b','<i4')) >>> x'a' array(1, 3)

Creating an array from sub-classes:

>>> np.array(np.mat('1 2; 3 4')) array([1, 2], [3, 4])

>>> np.array(np.mat('1 2; 3 4'), subok=True) matrix([1, 2], [3, 4])

val asarray : ?dtype:Np.Dtype.t -> ?order:[ `F | `C ] -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Convert the input to an array.

Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. dtype : data-type, optional By default, the data-type is inferred from the input data. order : 'C', 'F', optional Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to 'C'.

Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray with matching dtype and order. If `a` is a subclass of ndarray, a base class ndarray is returned.

See Also -------- asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. asarray_chkfinite : Similar function which checks input for NaNs and Infs. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions.

Examples -------- Convert a list into an array:

>>> a = 1, 2 >>> np.asarray(a) array(1, 2)

Existing arrays are not copied:

>>> a = np.array(1, 2) >>> np.asarray(a) is a True

If `dtype` is set, array is copied only if dtype does not match:

>>> a = np.array(1, 2, dtype=np.float32) >>> np.asarray(a, dtype=np.float32) is a True >>> np.asarray(a, dtype=np.float64) is a False

Contrary to `asanyarray`, ndarray subclasses are not passed through:

>>> issubclass(np.recarray, np.ndarray) True >>> a = np.array((1.0, 2), (3.0, 4), dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True

val atleast_1d : Py.Object.t list -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters ---------- arys1, arys2, ... : array_like One or more input arrays.

Returns ------- ret : ndarray An array, or list of arrays, each with ``a.ndim >= 1``. Copies are made only if necessary.

See Also -------- atleast_2d, atleast_3d

Examples -------- >>> np.atleast_1d(1.0) array(1.)

>>> x = np.arange(9.0).reshape(3,3) >>> np.atleast_1d(x) array([0., 1., 2.], [3., 4., 5.], [6., 7., 8.]) >>> np.atleast_1d(x) is x True

>>> np.atleast_1d(1, 3, 4) array([1]), array([3, 4])

val atleast_2d : Py.Object.t list -> Py.Object.t

View inputs as arrays with at least two dimensions.

Parameters ---------- arys1, arys2, ... : array_like One or more array-like sequences. Non-array inputs are converted to arrays. Arrays that already have two or more dimensions are preserved.

Returns ------- res, res2, ... : ndarray An array, or list of arrays, each with ``a.ndim >= 2``. Copies are avoided where possible, and views with two or more dimensions are returned.

See Also -------- atleast_1d, atleast_3d

Examples -------- >>> np.atleast_2d(3.0) array([3.])

>>> x = np.arange(3.0) >>> np.atleast_2d(x) array([0., 1., 2.]) >>> np.atleast_2d(x).base is x True

>>> np.atleast_2d(1, 1, 2, [1, 2]) array([[1]]), array([[1, 2]]), array([[1, 2]])

val comb : ?exact:bool -> ?repetition:bool -> n:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `I of int ] -> k:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `I of int ] -> unit -> Py.Object.t

The number of combinations of N things taken k at a time.

This is often expressed as 'N choose k'.

Parameters ---------- N : int, ndarray Number of things. k : int, ndarray Number of elements taken. exact : bool, optional If `exact` is False, then floating point precision is used, otherwise exact long integer is computed. repetition : bool, optional If `repetition` is True, then the number of combinations with repetition is computed.

Returns ------- val : int, float, ndarray The total number of combinations.

See Also -------- binom : Binomial coefficient ufunc

Notes -----

  • Array arguments accepted only for exact=False case.
  • If N < 0, or k < 0, then 0 is returned.
  • If k > N and repetition=False, then 0 is returned.

Examples -------- >>> from scipy.special import comb >>> k = np.array(3, 4) >>> n = np.array(10, 10) >>> comb(n, k, exact=False) array( 120., 210.) >>> comb(10, 3, exact=True) 120L >>> comb(10, 3, exact=True, repetition=True) 220L

val interpn : ?method_:string -> ?bounds_error:bool -> ?fill_value:[ `F of float | `I of int ] -> points:Py.Object.t -> values:[> `Ndarray ] Np.Obj.t -> xi:[> `Ndarray ] Np.Obj.t -> unit -> Py.Object.t

Multidimensional interpolation on regular grids.

Parameters ---------- points : tuple of ndarray of float, with shapes (m1, ), ..., (mn, ) The points defining the regular grid in n dimensions.

values : array_like, shape (m1, ..., mn, ...) The data on the regular grid in n dimensions.

xi : ndarray of shape (..., ndim) The coordinates to sample the gridded data at

method : str, optional The method of interpolation to perform. Supported are 'linear' and 'nearest', and 'splinef2d'. 'splinef2d' is only supported for 2-dimensional data.

bounds_error : bool, optional If True, when interpolated values are requested outside of the domain of the input data, a ValueError is raised. If False, then `fill_value` is used.

fill_value : number, optional If provided, the value to use for points outside of the interpolation domain. If None, values outside the domain are extrapolated. Extrapolation is not supported by method 'splinef2d'.

Returns ------- values_x : ndarray, shape xi.shape:-1 + values.shapendim: Interpolated values at input coordinates.

Notes -----

.. versionadded:: 0.14

See also -------- NearestNDInterpolator : Nearest neighbour interpolation on unstructured data in N dimensions

LinearNDInterpolator : Piecewise linear interpolant on unstructured data in N dimensions

RegularGridInterpolator : Linear and nearest-neighbor Interpolation on a regular grid in arbitrary dimensions

RectBivariateSpline : Bivariate spline approximation over a rectangular mesh

val lagrange : x:[> `Ndarray ] Np.Obj.t -> w:[> `Ndarray ] Np.Obj.t -> unit -> Py.Object.t

Return a Lagrange interpolating polynomial.

Given two 1-D arrays `x` and `w,` returns the Lagrange interpolating polynomial through the points ``(x, w)``.

Warning: This implementation is numerically unstable. Do not expect to be able to use more than about 20 points even if they are chosen optimally.

Parameters ---------- x : array_like `x` represents the x-coordinates of a set of datapoints. w : array_like `w` represents the y-coordinates of a set of datapoints, i.e. f(`x`).

Returns ------- lagrange : `numpy.poly1d` instance The Lagrange interpolating polynomial.

Examples -------- Interpolate :math:`f(x) = x^3` by 3 points.

>>> from scipy.interpolate import lagrange >>> x = np.array(0, 1, 2) >>> y = x**3 >>> poly = lagrange(x, y)

Since there are only 3 points, Lagrange polynomial has degree 2. Explicitly, it is given by

.. math::

\beginaligned L(x) &= 1\times \fracx (x - 2)

1

}

  1. 8\times \fracx (x-1)

    \\ &= x (-2 + 3x) \endaligned

>>> from numpy.polynomial.polynomial import Polynomial >>> Polynomial(poly).coef array( 3., -2., 0.)

val make_interp_spline : ?k:int -> ?t:[> `Ndarray ] Np.Obj.t -> ?bc_type:Py.Object.t -> ?axis:int -> ?check_finite:bool -> x:[> `Ndarray ] Np.Obj.t -> y:[> `Ndarray ] Np.Obj.t -> unit -> Py.Object.t

Compute the (coefficients of) interpolating B-spline.

Parameters ---------- x : array_like, shape (n,) Abscissas. y : array_like, shape (n, ...) Ordinates. k : int, optional B-spline degree. Default is cubic, k=3. t : array_like, shape (nt + k + 1,), optional. Knots. The number of knots needs to agree with the number of datapoints and the number of derivatives at the edges. Specifically, ``nt - n`` must equal ``len(deriv_l) + len(deriv_r)``. bc_type : 2-tuple or None Boundary conditions. Default is None, which means choosing the boundary conditions automatically. Otherwise, it must be a length-two tuple where the first element sets the boundary conditions at ``x0`` and the second element sets the boundary conditions at ``x-1``. Each of these must be an iterable of pairs ``(order, value)`` which gives the values of derivatives of specified orders at the given edge of the interpolation interval. Alternatively, the following string aliases are recognized:

* ``'clamped'``: The first derivatives at the ends are zero. This is equivalent to ``bc_type=((1, 0.0), (1, 0.0))``. * ``'natural'``: The second derivatives at ends are zero. This is equivalent to ``bc_type=((2, 0.0), (2, 0.0))``. * ``'not-a-knot'`` (default): The first and second segments are the same polynomial. This is equivalent to having ``bc_type=None``.

axis : int, optional Interpolation axis. Default is 0. check_finite : bool, optional Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. Default is True.

Returns ------- b : a BSpline object of the degree ``k`` and with knots ``t``.

Examples --------

Use cubic interpolation on Chebyshev nodes:

>>> def cheb_nodes(N): ... jj = 2.*np.arange(N) + 1 ... x = np.cos(np.pi * jj / 2 / N)::-1 ... return x

>>> x = cheb_nodes(20) >>> y = np.sqrt(1 - x**2)

>>> from scipy.interpolate import BSpline, make_interp_spline >>> b = make_interp_spline(x, y) >>> np.allclose(b(x), y) True

Note that the default is a cubic spline with a not-a-knot boundary condition

>>> b.k 3

Here we use a 'natural' spline, with zero 2nd derivatives at edges:

>>> l, r = (2, 0.0), (2, 0.0) >>> b_n = make_interp_spline(x, y, bc_type=(l, r)) # or, bc_type='natural' >>> np.allclose(b_n(x), y) True >>> x0, x1 = x0, x-1 >>> np.allclose(b_n(x0, 2), b_n(x1, 2), 0, 0) True

Interpolation of parametric curves is also supported. As an example, we compute a discretization of a snail curve in polar coordinates

>>> phi = np.linspace(0, 2.*np.pi, 40) >>> r = 0.3 + np.cos(phi) >>> x, y = r*np.cos(phi), r*np.sin(phi) # convert to Cartesian coordinates

Build an interpolating curve, parameterizing it by the angle

>>> from scipy.interpolate import make_interp_spline >>> spl = make_interp_spline(phi, np.c_x, y)

Evaluate the interpolant on a finer grid (note that we transpose the result to unpack it into a pair of x- and y-arrays)

>>> phi_new = np.linspace(0, 2.*np.pi, 100) >>> x_new, y_new = spl(phi_new).T

Plot the result

>>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o') >>> plt.plot(x_new, y_new, '-') >>> plt.show()

See Also -------- BSpline : base class representing the B-spline objects CubicSpline : a cubic spline in the polynomial basis make_lsq_spline : a similar factory function for spline fitting UnivariateSpline : a wrapper over FITPACK spline fitting routines splrep : a wrapper over FITPACK spline fitting routines

val prod : Py.Object.t -> Py.Object.t

Product of a list of numbers; ~40x faster vs np.prod for Python tuples

val ravel : ?order:[ `C | `F | `A | `K ] -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return a contiguous flattened array.

A 1-D array, containing the elements of the input, is returned. A copy is made only if needed.

As of NumPy 1.10, the returned array will have the same type as the input array. (for example, a masked array will be returned for a masked array input)

Parameters ---------- a : array_like Input array. The elements in `a` are read in the order specified by `order`, and packed as a 1-D array. order : 'C','F', 'A', 'K', optional

The elements of `a` are read using this index order. 'C' means to index the elements in row-major, C-style order, with the last axis index changing fastest, back to the first axis index changing slowest. 'F' means to index the elements in column-major, Fortran-style order, with the first index changing fastest, and the last index changing slowest. Note that the 'C' and 'F' options take no account of the memory layout of the underlying array, and only refer to the order of axis indexing. 'A' means to read the elements in Fortran-like index order if `a` is Fortran *contiguous* in memory, C-like order otherwise. 'K' means to read the elements in the order they occur in memory, except for reversing the data when strides are negative. By default, 'C' index order is used.

Returns ------- y : array_like y is an array of the same subtype as `a`, with shape ``(a.size,)``. Note that matrices are special cased for backward compatibility, if `a` is a matrix, then y is a 1-D ndarray.

See Also -------- ndarray.flat : 1-D iterator over an array. ndarray.flatten : 1-D array copy of the elements of an array in row-major order. ndarray.reshape : Change the shape of an array without changing its data.

Notes ----- In row-major, C-style order, in two dimensions, the row index varies the slowest, and the column index the quickest. This can be generalized to multiple dimensions, where row-major order implies that the index along the first axis varies slowest, and the index along the last quickest. The opposite holds for column-major, Fortran-style index ordering.

When a view is desired in as many cases as possible, ``arr.reshape(-1)`` may be preferable.

Examples -------- It is equivalent to ``reshape(-1, order=order)``.

>>> x = np.array([1, 2, 3], [4, 5, 6]) >>> np.ravel(x) array(1, 2, 3, 4, 5, 6)

>>> x.reshape(-1) array(1, 2, 3, 4, 5, 6)

>>> np.ravel(x, order='F') array(1, 4, 2, 5, 3, 6)

When ``order`` is 'A', it will preserve the array's 'C' or 'F' ordering:

>>> np.ravel(x.T) array(1, 4, 2, 5, 3, 6) >>> np.ravel(x.T, order='A') array(1, 2, 3, 4, 5, 6)

When ``order`` is 'K', it will preserve orderings that are neither 'C' nor 'F', but won't reverse axes:

>>> a = np.arange(3)::-1; a array(2, 1, 0) >>> a.ravel(order='C') array(2, 1, 0) >>> a.ravel(order='K') array(2, 1, 0)

>>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a array([[ 0, 2, 4], [ 1, 3, 5]], [[ 6, 8, 10], [ 7, 9, 11]]) >>> a.ravel(order='C') array( 0, 2, 4, 1, 3, 5, 6, 8, 10, 7, 9, 11) >>> a.ravel(order='K') array( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

val searchsorted : ?side:[ `Left | `Right ] -> ?sorter:Py.Object.t -> a:Py.Object.t -> v:[> `Ndarray ] Np.Obj.t -> unit -> Py.Object.t

Find indices where elements should be inserted to maintain order.

Find the indices into a sorted array `a` such that, if the corresponding elements in `v` were inserted before the indices, the order of `a` would be preserved.

Assuming that `a` is sorted:

====== ============================ `side` returned index `i` satisfies ====== ============================ left ``ai-1 < v <= ai`` right ``ai-1 <= v < ai`` ====== ============================

Parameters ---------- a : 1-D array_like Input array. If `sorter` is None, then it must be sorted in ascending order, otherwise `sorter` must be an array of indices that sort it. v : array_like Values to insert into `a`. side : 'left', 'right', optional If 'left', the index of the first suitable location found is given. If 'right', return the last such index. If there is no suitable index, return either 0 or N (where N is the length of `a`). sorter : 1-D array_like, optional Optional array of integer indices that sort array a into ascending order. They are typically the result of argsort.

.. versionadded:: 1.7.0

Returns ------- indices : array of ints Array of insertion points with the same shape as `v`.

See Also -------- sort : Return a sorted copy of an array. histogram : Produce histogram from 1-D data.

Notes ----- Binary search is used to find the required insertion points.

As of NumPy 1.4.0 `searchsorted` works with real/complex arrays containing `nan` values. The enhanced sort order is documented in `sort`.

This function uses the same algorithm as the builtin python `bisect.bisect_left` (``side='left'``) and `bisect.bisect_right` (``side='right'``) functions, which is also vectorized in the `v` argument.

Examples -------- >>> np.searchsorted(1,2,3,4,5, 3) 2 >>> np.searchsorted(1,2,3,4,5, 3, side='right') 3 >>> np.searchsorted(1,2,3,4,5, -10, 10, 2, 3) array(0, 5, 1, 2)

val transpose : ?axes:Py.Object.t -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Permute the dimensions of an array.

Parameters ---------- a : array_like Input array. axes : list of ints, optional By default, reverse the dimensions, otherwise permute the axes according to the values given.

Returns ------- p : ndarray `a` with its axes permuted. A view is returned whenever possible.

See Also -------- moveaxis argsort

Notes ----- Use `transpose(a, argsort(axes))` to invert the transposition of tensors when using the `axes` keyword argument.

Transposing a 1-D array returns an unchanged view of the original array.

Examples -------- >>> x = np.arange(4).reshape((2,2)) >>> x array([0, 1], [2, 3])

>>> np.transpose(x) array([0, 2], [1, 3])

>>> x = np.ones((1, 2, 3)) >>> np.transpose(x, (1, 0, 2)).shape (2, 1, 3)

OCaml

Innovation. Community. Security.