package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `Orthopoly1d
]
type t = [ `Object | `Orthopoly1d ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val create : ?weights:Py.Object.t -> ?hn:Py.Object.t -> ?kn:Py.Object.t -> ?wfunc:Py.Object.t -> ?limits:Py.Object.t -> ?monic:Py.Object.t -> ?eval_func:Py.Object.t -> roots:Py.Object.t -> unit -> t

A one-dimensional polynomial class.

A convenience class, used to encapsulate 'natural' operations on polynomials so that said operations may take on their customary form in code (see Examples).

Parameters ---------- c_or_r : array_like The polynomial's coefficients, in decreasing powers, or if the value of the second parameter is True, the polynomial's roots (values where the polynomial evaluates to 0). For example, ``poly1d(1, 2, 3)`` returns an object that represents :math:`x^2 + 2x + 3`, whereas ``poly1d(1, 2, 3, True)`` returns one that represents :math:`(x-1)(x-2)(x-3) = x^3 - 6x^2 + 11x -6`. r : bool, optional If True, `c_or_r` specifies the polynomial's roots; the default is False. variable : str, optional Changes the variable used when printing `p` from `x` to `variable` (see Examples).

Examples -------- Construct the polynomial :math:`x^2 + 2x + 3`:

>>> p = np.poly1d(1, 2, 3) >>> print(np.poly1d(p)) 2 1 x + 2 x + 3

Evaluate the polynomial at :math:`x = 0.5`:

>>> p(0.5) 4.25

Find the roots:

>>> p.r array(-1.+1.41421356j, -1.-1.41421356j) >>> p(p.r) array( -4.44089210e-16+0.j, -4.44089210e-16+0.j) # may vary

These numbers in the previous line represent (0, 0) to machine precision

Show the coefficients:

>>> p.c array(1, 2, 3)

Display the order (the leading zero-coefficients are removed):

>>> p.order 2

Show the coefficient of the k-th power in the polynomial (which is equivalent to ``p.c-(i+1)``):

>>> p1 2

Polynomials can be added, subtracted, multiplied, and divided (returns quotient and remainder):

>>> p * p poly1d( 1, 4, 10, 12, 9)

>>> (p**3 + 4) / p (poly1d( 1., 4., 10., 12., 9.), poly1d(4.))

``asarray(p)`` gives the coefficient array, so polynomials can be used in all functions that accept arrays:

>>> p**2 # square of polynomial poly1d( 1, 4, 10, 12, 9)

>>> np.square(p) # square of individual coefficients array(1, 4, 9)

The variable used in the string representation of `p` can be modified, using the `variable` parameter:

>>> p = np.poly1d(1,2,3, variable='z') >>> print(p) 2 1 z + 2 z + 3

Construct a polynomial from its roots:

>>> np.poly1d(1, 2, True) poly1d( 1., -3., 2.)

This is the same polynomial as obtained by:

>>> np.poly1d(1, -1) * np.poly1d(1, -2) poly1d( 1, -3, 2)

val __getitem__ : val_:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

None

val __iter__ : [> tag ] Obj.t -> Py.Object.t

None

val __setitem__ : key:Py.Object.t -> val_:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

None

val deriv : ?m:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Return a derivative of this polynomial.

Refer to `polyder` for full documentation.

See Also -------- polyder : equivalent function

val integ : ?m:Py.Object.t -> ?k:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Return an antiderivative (indefinite integral) of this polynomial.

Refer to `polyint` for full documentation.

See Also -------- polyint : equivalent function

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.