package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val get_py : string -> Py.Object.t

Get an attribute of this module as a Py.Object.t. This is useful to pass a Python function to another function.

val asarray : ?dtype:Np.Dtype.t -> ?order:[ `C | `F ] -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Convert the input to an array.

Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. dtype : data-type, optional By default, the data-type is inferred from the input data. order : 'C', 'F', optional Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to 'C'.

Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray with matching dtype and order. If `a` is a subclass of ndarray, a base class ndarray is returned.

See Also -------- asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. asarray_chkfinite : Similar function which checks input for NaNs and Infs. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions.

Examples -------- Convert a list into an array:

>>> a = 1, 2 >>> np.asarray(a) array(1, 2)

Existing arrays are not copied:

>>> a = np.array(1, 2) >>> np.asarray(a) is a True

If `dtype` is set, array is copied only if dtype does not match:

>>> a = np.array(1, 2, dtype=np.float32) >>> np.asarray(a, dtype=np.float32) is a True >>> np.asarray(a, dtype=np.float64) is a False

Contrary to `asanyarray`, ndarray subclasses are not passed through:

>>> issubclass(np.recarray, np.ndarray) True >>> a = np.array((1.0, 2), (3.0, 4), dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True

val cc_diff : ?period:float -> ?_cache:Py.Object.t -> x:[> `Ndarray ] Np.Obj.t -> a:Py.Object.t -> b:Py.Object.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then::

y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j

Parameters ---------- x : array_like The array to take the pseudo-derivative from. a,b : float Defines the parameters of the sinh/sinh pseudo-differential operator. period : float, optional The period of the sequence x. Default is ``2*pi``.

Returns ------- cc_diff : ndarray Pseudo-derivative of periodic sequence `x`.

Notes ----- ``cc_diff(cc_diff(x,a,b),b,a) == x``

val cos : ?out: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_ndarray_and_None of Py.Object.t ] -> ?where:[> `Ndarray ] Np.Obj.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

cos(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature, extobj)

Cosine element-wise.

Parameters ---------- x : array_like Input array in radians. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.

Returns ------- y : ndarray The corresponding cosine values. This is a scalar if `x` is a scalar.

Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples)

References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972.

Examples -------- >>> np.cos(np.array(0, np.pi/2, np.pi)) array( 1.00000000e+00, 6.12303177e-17, -1.00000000e+00) >>> >>> # Example of providing the optional output parameter >>> out1 = np.array(0, dtype='d') >>> out2 = np.cos(0.1, out1) >>> out2 is out1 True >>> >>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.cos(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File '<stdin>', line 1, in <module> ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

val cosh : ?out: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_ndarray_and_None of Py.Object.t ] -> ?where:[> `Ndarray ] Np.Obj.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

cosh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature, extobj)

Hyperbolic cosine, element-wise.

Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``.

Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.

Returns ------- out : ndarray or scalar Output array of same shape as `x`. This is a scalar if `x` is a scalar.

Examples -------- >>> np.cosh(0) 1.0

The hyperbolic cosine describes the shape of a hanging cable:

>>> import matplotlib.pyplot as plt >>> x = np.linspace(-4, 4, 1000) >>> plt.plot(x, np.cosh(x)) >>> plt.show()

val cs_diff : ?period:float -> ?_cache:Py.Object.t -> x:[> `Ndarray ] Np.Obj.t -> a:Py.Object.t -> b:Py.Object.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.

If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x and y, respectively, then::

y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j y_0 = 0

Parameters ---------- x : array_like The array to take the pseudo-derivative from. a, b : float Defines the parameters of the cosh/sinh pseudo-differential operator. period : float, optional The period of the sequence. Default period is ``2*pi``.

Returns ------- cs_diff : ndarray Pseudo-derivative of periodic sequence `x`.

Notes ----- For even len(`x`), the Nyquist mode of `x` is taken as zero.

val diff : ?order:int -> ?period:float -> ?_cache:Py.Object.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> Py.Object.t

Return kth derivative (or integral) of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then::

y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j y_0 = 0 if order is not 0.

Parameters ---------- x : array_like Input array. order : int, optional The order of differentiation. Default order is 1. If order is negative, then integration is carried out under the assumption that ``x_0 == 0``. period : float, optional The assumed period of the sequence. Default is ``2*pi``.

Notes ----- If ``sum(x, axis=0) = 0`` then ``diff(diff(x, k), -k) == x`` (within numerical accuracy).

For odd order and even ``len(x)``, the Nyquist mode is taken zero.

val hilbert : ?_cache:Py.Object.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return Hilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then::

y_j = sqrt(-1)*sign(j) * x_j y_0 = 0

Parameters ---------- x : array_like The input array, should be periodic. _cache : dict, optional Dictionary that contains the kernel used to do a convolution with.

Returns ------- y : ndarray The transformed input.

See Also -------- scipy.signal.hilbert : Compute the analytic signal, using the Hilbert transform.

Notes ----- If ``sum(x, axis=0) == 0`` then ``hilbert(ihilbert(x)) == x``.

For even len(x), the Nyquist mode of x is taken zero.

The sign of the returned transform does not have a factor -1 that is more often than not found in the definition of the Hilbert transform. Note also that `scipy.signal.hilbert` does have an extra -1 factor compared to this function.

val ihilbert : Py.Object.t -> Py.Object.t

Return inverse Hilbert transform of a periodic sequence x.

If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x and y, respectively, then::

y_j = -sqrt(-1)*sign(j) * x_j y_0 = 0

val iscomplexobj : Py.Object.t -> bool

Check for a complex type or an array of complex numbers.

The type of the input is checked, not the value. Even if the input has an imaginary part equal to zero, `iscomplexobj` evaluates to True.

Parameters ---------- x : any The input can be of any type and shape.

Returns ------- iscomplexobj : bool The return value, True if `x` is of a complex type or has at least one complex element.

See Also -------- isrealobj, iscomplex

Examples -------- >>> np.iscomplexobj(1) False >>> np.iscomplexobj(1+0j) True >>> np.iscomplexobj(3, 1+0j, True) True

val itilbert : ?period:Py.Object.t -> ?_cache:Py.Object.t -> x:Py.Object.t -> h:Py.Object.t -> unit -> Py.Object.t

Return inverse h-Tilbert transform of a periodic sequence x.

If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x and y, respectively, then::

y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j y_0 = 0

For more details, see `tilbert`.

val sc_diff : ?period:float -> ?_cache:Py.Object.t -> x:[> `Ndarray ] Np.Obj.t -> a:Py.Object.t -> b:Py.Object.t -> unit -> Py.Object.t

Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then::

y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j y_0 = 0

Parameters ---------- x : array_like Input array. a,b : float Defines the parameters of the sinh/cosh pseudo-differential operator. period : float, optional The period of the sequence x. Default is 2*pi.

Notes ----- ``sc_diff(cs_diff(x,a,b),b,a) == x`` For even ``len(x)``, the Nyquist mode of x is taken as zero.

val shift : ?period:float -> ?_cache:Py.Object.t -> x:[> `Ndarray ] Np.Obj.t -> a:float -> unit -> Py.Object.t

Shift periodic sequence x by a: y(u) = x(u+a).

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then::

y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f

Parameters ---------- x : array_like The array to take the pseudo-derivative from. a : float Defines the parameters of the sinh/sinh pseudo-differential period : float, optional The period of the sequences x and y. Default period is ``2*pi``.

val sin : ?out: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_ndarray_and_None of Py.Object.t ] -> ?where:[> `Ndarray ] Np.Obj.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

sin(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature, extobj)

Trigonometric sine, element-wise.

Parameters ---------- x : array_like Angle, in radians (:math:`2 \pi` rad equals 360 degrees). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.

Returns ------- y : array_like The sine of each element of x. This is a scalar if `x` is a scalar.

See Also -------- arcsin, sinh, cos

Notes ----- The sine is one of the fundamental functions of trigonometry (the mathematical study of triangles). Consider a circle of radius 1 centered on the origin. A ray comes in from the :math:`+x` axis, makes an angle at the origin (measured counter-clockwise from that axis), and departs from the origin. The :math:`y` coordinate of the outgoing ray's intersection with the unit circle is the sine of that angle. It ranges from -1 for :math:`x=3\pi / 2` to +1 for :math:`\pi / 2.` The function has zeroes where the angle is a multiple of :math:`\pi`. Sines of angles between :math:`\pi` and :math:`2\pi` are negative. The numerous properties of the sine and related functions are included in any standard trigonometry text.

Examples -------- Print sine of one angle:

>>> np.sin(np.pi/2.) 1.0

Print sines of an array of angles given in degrees:

>>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180. ) array( 0. , 0.5 , 0.70710678, 0.8660254 , 1. )

Plot the sine function:

>>> import matplotlib.pylab as plt >>> x = np.linspace(-np.pi, np.pi, 201) >>> plt.plot(x, np.sin(x)) >>> plt.xlabel('Angle rad') >>> plt.ylabel('sin(x)') >>> plt.axis('tight') >>> plt.show()

val sinh : ?out: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_ndarray_and_None of Py.Object.t ] -> ?where:[> `Ndarray ] Np.Obj.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

sinh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature, extobj)

Hyperbolic sine, element-wise.

Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or ``-1j * np.sin(1j*x)``.

Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.

Returns ------- y : ndarray The corresponding hyperbolic sine values. This is a scalar if `x` is a scalar.

Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples)

References ---------- M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83.

Examples -------- >>> np.sinh(0) 0.0 >>> np.sinh(np.pi*1j/2) 1j >>> np.sinh(np.pi*1j) # (exact value is 0) 1.2246063538223773e-016j >>> # Discrepancy due to vagaries of floating point arithmetic.

>>> # Example of providing the optional output parameter >>> out1 = np.array(0, dtype='d') >>> out2 = np.sinh(0.1, out1) >>> out2 is out1 True

>>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.sinh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File '<stdin>', line 1, in <module> ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

val ss_diff : ?period:float -> ?_cache:Py.Object.t -> x:[> `Ndarray ] Np.Obj.t -> a:Py.Object.t -> b:Py.Object.t -> unit -> Py.Object.t

Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then::

y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j y_0 = a/b * x_0

Parameters ---------- x : array_like The array to take the pseudo-derivative from. a,b Defines the parameters of the sinh/sinh pseudo-differential operator. period : float, optional The period of the sequence x. Default is ``2*pi``.

Notes ----- ``ss_diff(ss_diff(x,a,b),b,a) == x``

val tanh : ?out: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_ndarray_and_None of Py.Object.t ] -> ?where:[> `Ndarray ] Np.Obj.t -> x:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

tanh(x, /, out=None, *, where=True, casting='same_kind', order='K', dtype=None, subok=True, signature, extobj)

Compute hyperbolic tangent element-wise.

Equivalent to ``np.sinh(x)/np.cosh(x)`` or ``-1j * np.tan(1j*x)``.

Parameters ---------- x : array_like Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. where : array_like, optional This condition is broadcast over the input. At locations where the condition is True, the `out` array will be set to the ufunc result. Elsewhere, the `out` array will retain its original value. Note that if an uninitialized `out` array is created via the default ``out=None``, locations within it where the condition is False will remain uninitialized. **kwargs For other keyword-only arguments, see the :ref:`ufunc docs <ufuncs.kwargs>`.

Returns ------- y : ndarray The corresponding hyperbolic tangent values. This is a scalar if `x` is a scalar.

Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples)

References ---------- .. 1 M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York, NY: Dover, 1972, pg. 83. http://www.math.sfu.ca/~cbm/aands/

.. 2 Wikipedia, 'Hyperbolic function', https://en.wikipedia.org/wiki/Hyperbolic_function

Examples -------- >>> np.tanh((0, np.pi*1j, np.pi*1j/2)) array( 0. +0.00000000e+00j, 0. -1.22460635e-16j, 0. +1.63317787e+16j)

>>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out1 = np.array(0, dtype='d') >>> out2 = np.tanh(0.1, out1) >>> out2 is out1 True

>>> # Example of ValueError due to provision of shape mis-matched `out` >>> np.tanh(np.zeros((3,3)),np.zeros((2,2))) Traceback (most recent call last): File '<stdin>', line 1, in <module> ValueError: operands could not be broadcast together with shapes (3,3) (2,2)

val tilbert : ?period:float -> ?_cache:Py.Object.t -> x:[> `Ndarray ] Np.Obj.t -> h:float -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return h-Tilbert transform of a periodic sequence x.

If x_j and y_j are Fourier coefficients of periodic functions x and y, respectively, then::

y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j y_0 = 0

Parameters ---------- x : array_like The input array to transform. h : float Defines the parameter of the Tilbert transform. period : float, optional The assumed period of the sequence. Default period is ``2*pi``.

Returns ------- tilbert : ndarray The result of the transform.

Notes ----- If ``sum(x, axis=0) == 0`` and ``n = len(x)`` is odd, then ``tilbert(itilbert(x)) == x``.

If ``2 * pi * h / period`` is approximately 10 or larger, then numerically ``tilbert == hilbert`` (theoretically oo-Tilbert == Hilbert).

For even ``len(x)``, the Nyquist mode of ``x`` is taken zero.

OCaml

Innovation. Community. Security.