package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val get_py : string -> Py.Object.t

Get an attribute of this module as a Py.Object.t. This is useful to pass a Python function to another function.

val atleast_1d : Py.Object.t list -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters ---------- arys1, arys2, ... : array_like One or more input arrays.

Returns ------- ret : ndarray An array, or list of arrays, each with ``a.ndim >= 1``. Copies are made only if necessary.

See Also -------- atleast_2d, atleast_3d

Examples -------- >>> np.atleast_1d(1.0) array(1.)

>>> x = np.arange(9.0).reshape(3,3) >>> np.atleast_1d(x) array([0., 1., 2.], [3., 4., 5.], [6., 7., 8.]) >>> np.atleast_1d(x) is x True

>>> np.atleast_1d(1, 3, 4) array([1]), array([3, 4])

val atleast_2d : Py.Object.t list -> Py.Object.t

View inputs as arrays with at least two dimensions.

Parameters ---------- arys1, arys2, ... : array_like One or more array-like sequences. Non-array inputs are converted to arrays. Arrays that already have two or more dimensions are preserved.

Returns ------- res, res2, ... : ndarray An array, or list of arrays, each with ``a.ndim >= 2``. Copies are avoided where possible, and views with two or more dimensions are returned.

See Also -------- atleast_1d, atleast_3d

Examples -------- >>> np.atleast_2d(3.0) array([3.])

>>> x = np.arange(3.0) >>> np.atleast_2d(x) array([0., 1., 2.]) >>> np.atleast_2d(x).base is x True

>>> np.atleast_2d(1, 1, 2, [1, 2]) array([[1]]), array([[1, 2]]), array([[1, 2]])

val det : ?overwrite_a:bool -> ?check_finite:bool -> a:[> `Ndarray ] Np.Obj.t -> unit -> Py.Object.t

Compute the determinant of a matrix

The determinant of a square matrix is a value derived arithmetically from the coefficients of the matrix.

The determinant for a 3x3 matrix, for example, is computed as follows::

a b c d e f = A g h i

det(A) = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h

Parameters ---------- a : (M, M) array_like A square matrix. overwrite_a : bool, optional Allow overwriting data in a (may enhance performance). check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns ------- det : float or complex Determinant of `a`.

Notes ----- The determinant is computed via LU factorization, LAPACK routine z/dgetrf.

Examples -------- >>> from scipy import linalg >>> a = np.array([1,2,3], [4,5,6], [7,8,9]) >>> linalg.det(a) 0.0 >>> a = np.array([0,2,3], [4,5,6], [7,8,9]) >>> linalg.det(a) 3.0

val get_flinalg_funcs : ?arrays:Py.Object.t -> ?debug:Py.Object.t -> names:Py.Object.t -> unit -> Py.Object.t

Return optimal available _flinalg function objects with names. Arrays are used to determine optimal prefix.

val get_lapack_funcs : ?arrays:[> `Ndarray ] Np.Obj.t list -> ?dtype:[ `S of string | `Dtype of Np.Dtype.t ] -> names:[ `Sequence_of_str of Py.Object.t | `S of string ] -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return available LAPACK function objects from names.

Arrays are used to determine the optimal prefix of LAPACK routines.

Parameters ---------- names : str or sequence of str Name(s) of LAPACK functions without type prefix.

arrays : sequence of ndarrays, optional Arrays can be given to determine optimal prefix of LAPACK routines. If not given, double-precision routines will be used, otherwise the most generic type in arrays will be used.

dtype : str or dtype, optional Data-type specifier. Not used if `arrays` is non-empty.

Returns ------- funcs : list List containing the found function(s).

Notes ----- This routine automatically chooses between Fortran/C interfaces. Fortran code is used whenever possible for arrays with column major order. In all other cases, C code is preferred.

In LAPACK, the naming convention is that all functions start with a type prefix, which depends on the type of the principal matrix. These can be one of 's', 'd', 'c', 'z' for the NumPy types float32, float64, complex64, complex128 respectively, and are stored in attribute ``typecode`` of the returned functions.

Examples -------- Suppose we would like to use '?lange' routine which computes the selected norm of an array. We pass our array in order to get the correct 'lange' flavor.

>>> import scipy.linalg as LA >>> a = np.random.rand(3,2) >>> x_lange = LA.get_lapack_funcs('lange', (a,)) >>> x_lange.typecode 'd' >>> x_lange = LA.get_lapack_funcs('lange',(a*1j,)) >>> x_lange.typecode 'z'

Several LAPACK routines work best when its internal WORK array has the optimal size (big enough for fast computation and small enough to avoid waste of memory). This size is determined also by a dedicated query to the function which is often wrapped as a standalone function and commonly denoted as ``###_lwork``. Below is an example for ``?sysv``

>>> import scipy.linalg as LA >>> a = np.random.rand(1000,1000) >>> b = np.random.rand(1000,1)*1j >>> # We pick up zsysv and zsysv_lwork due to b array ... xsysv, xlwork = LA.get_lapack_funcs(('sysv', 'sysv_lwork'), (a, b)) >>> opt_lwork, _ = xlwork(a.shape0) # returns a complex for 'z' prefix >>> udut, ipiv, x, info = xsysv(a, b, lwork=int(opt_lwork.real))

val inv : ?overwrite_a:bool -> ?check_finite:bool -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Compute the inverse of a matrix.

Parameters ---------- a : array_like Square matrix to be inverted. overwrite_a : bool, optional Discard data in `a` (may improve performance). Default is False. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns ------- ainv : ndarray Inverse of the matrix `a`.

Raises ------ LinAlgError If `a` is singular. ValueError If `a` is not square, or not 2D.

Examples -------- >>> from scipy import linalg >>> a = np.array([1., 2.], [3., 4.]) >>> linalg.inv(a) array([-2. , 1. ], [ 1.5, -0.5]) >>> np.dot(a, linalg.inv(a)) array([ 1., 0.], [ 0., 1.])

val levinson : a:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `PyObject of Py.Object.t ] -> b:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `PyObject of Py.Object.t ] -> unit -> Py.Object.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Solve a linear Toeplitz system using Levinson recursion.

Parameters ---------- a : array, dtype=double or complex128, shape=(2n-1,) The first column of the matrix in reverse order (without the diagonal) followed by the first (see below) b : array, dtype=double or complex128, shape=(n,) The right hand side vector. Both a and b must have the same type (double or complex128).

Notes ----- For example, the 5x5 toeplitz matrix below should be represented as the linear array ``a`` on the right ::

a0 a1 a2 a3 a4 a-1 a0 a1 a2 a3 a-2 a-1 a0 a1 a2 -> a-4 a-3 a-2 a-1 a0 a1 a2 a3 a4 a-3 a-2 a-1 a0 a1 a-4 a-3 a-2 a-1 a0

Returns ------- x : arrray, shape=(n,) The solution vector reflection_coeff : array, shape=(n+1,) Toeplitz reflection coefficients. When a is symmetric Toeplitz and ``b`` is ``an:``, as in the solution of autoregressive systems, then ``reflection_coeff`` also correspond to the partial autocorrelation function.

val lstsq : ?cond:float -> ?overwrite_a:bool -> ?overwrite_b:bool -> ?check_finite:bool -> ?lapack_driver:string -> a:[> `Ndarray ] Np.Obj.t -> b:Py.Object.t -> unit -> Py.Object.t * Py.Object.t * int * Py.Object.t option

Compute least-squares solution to equation Ax = b.

Compute a vector x such that the 2-norm ``|b - A x|`` is minimized.

Parameters ---------- a : (M, N) array_like Left-hand side array b : (M,) or (M, K) array_like Right hand side array cond : float, optional Cutoff for 'small' singular values; used to determine effective rank of a. Singular values smaller than ``rcond * largest_singular_value`` are considered zero. overwrite_a : bool, optional Discard data in `a` (may enhance performance). Default is False. overwrite_b : bool, optional Discard data in `b` (may enhance performance). Default is False. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. lapack_driver : str, optional Which LAPACK driver is used to solve the least-squares problem. Options are ``'gelsd'``, ``'gelsy'``, ``'gelss'``. Default (``'gelsd'``) is a good choice. However, ``'gelsy'`` can be slightly faster on many problems. ``'gelss'`` was used historically. It is generally slow but uses less memory.

.. versionadded:: 0.17.0

Returns ------- x : (N,) or (N, K) ndarray Least-squares solution. Return shape matches shape of `b`. residues : (K,) ndarray or float Square of the 2-norm for each column in ``b - a x``, if ``M > N`` and ``ndim(A) == n`` (returns a scalar if b is 1-D). Otherwise a (0,)-shaped array is returned. rank : int Effective rank of `a`. s : (min(M, N),) ndarray or None Singular values of `a`. The condition number of a is ``abs(s0 / s-1)``.

Raises ------ LinAlgError If computation does not converge.

ValueError When parameters are not compatible.

See Also -------- scipy.optimize.nnls : linear least squares with non-negativity constraint

Notes ----- When ``'gelsy'`` is used as a driver, `residues` is set to a (0,)-shaped array and `s` is always ``None``.

Examples -------- >>> from scipy.linalg import lstsq >>> import matplotlib.pyplot as plt

Suppose we have the following data:

>>> x = np.array(1, 2.5, 3.5, 4, 5, 7, 8.5) >>> y = np.array(0.3, 1.1, 1.5, 2.0, 3.2, 6.6, 8.6)

We want to fit a quadratic polynomial of the form ``y = a + b*x**2`` to this data. We first form the 'design matrix' M, with a constant column of 1s and a column containing ``x**2``:

>>> M = x:, np.newaxis**0, 2 >>> M array([ 1. , 1. ], [ 1. , 6.25], [ 1. , 12.25], [ 1. , 16. ], [ 1. , 25. ], [ 1. , 49. ], [ 1. , 72.25])

We want to find the least-squares solution to ``M.dot(p) = y``, where ``p`` is a vector with length 2 that holds the parameters ``a`` and ``b``.

>>> p, res, rnk, s = lstsq(M, y) >>> p array( 0.20925829, 0.12013861)

Plot the data and the fitted curve.

>>> plt.plot(x, y, 'o', label='data') >>> xx = np.linspace(0, 9, 101) >>> yy = p0 + p1*xx**2 >>> plt.plot(xx, yy, label='least squares fit, $y = a + bx^2$') >>> plt.xlabel('x') >>> plt.ylabel('y') >>> plt.legend(framealpha=1, shadow=True) >>> plt.grid(alpha=0.25) >>> plt.show()

val matrix_balance : ?permute:bool -> ?scale:float -> ?separate:bool -> ?overwrite_a:bool -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Compute a diagonal similarity transformation for row/column balancing.

The balancing tries to equalize the row and column 1-norms by applying a similarity transformation such that the magnitude variation of the matrix entries is reflected to the scaling matrices.

Moreover, if enabled, the matrix is first permuted to isolate the upper triangular parts of the matrix and, again if scaling is also enabled, only the remaining subblocks are subjected to scaling.

The balanced matrix satisfies the following equality

.. math::

B = T^

1

}

A T

The scaling coefficients are approximated to the nearest power of 2 to avoid round-off errors.

Parameters ---------- A : (n, n) array_like Square data matrix for the balancing. permute : bool, optional The selector to define whether permutation of A is also performed prior to scaling. scale : bool, optional The selector to turn on and off the scaling. If False, the matrix will not be scaled. separate : bool, optional This switches from returning a full matrix of the transformation to a tuple of two separate 1-D permutation and scaling arrays. overwrite_a : bool, optional This is passed to xGEBAL directly. Essentially, overwrites the result to the data. It might increase the space efficiency. See LAPACK manual for details. This is False by default.

Returns ------- B : (n, n) ndarray Balanced matrix T : (n, n) ndarray A possibly permuted diagonal matrix whose nonzero entries are integer powers of 2 to avoid numerical truncation errors. scale, perm : (n,) ndarray If ``separate`` keyword is set to True then instead of the array ``T`` above, the scaling and the permutation vectors are given separately as a tuple without allocating the full array ``T``.

Notes -----

This algorithm is particularly useful for eigenvalue and matrix decompositions and in many cases it is already called by various LAPACK routines.

The algorithm is based on the well-known technique of 1_ and has been modified to account for special cases. See 2_ for details which have been implemented since LAPACK v3.5.0. Before this version there are corner cases where balancing can actually worsen the conditioning. See 3_ for such examples.

The code is a wrapper around LAPACK's xGEBAL routine family for matrix balancing.

.. versionadded:: 0.19.0

Examples -------- >>> from scipy import linalg >>> x = np.array([1,2,0], [9,1,0.01], [1,2,10*np.pi])

>>> y, permscale = linalg.matrix_balance(x) >>> np.abs(x).sum(axis=0) / np.abs(x).sum(axis=1) array( 3.66666667, 0.4995005 , 0.91312162)

>>> np.abs(y).sum(axis=0) / np.abs(y).sum(axis=1) array( 1.2 , 1.27041742, 0.92658316) # may vary

>>> permscale # only powers of 2 (0.5 == 2^(-1)) array([ 0.5, 0. , 0. ], # may vary [ 0. , 1. , 0. ], [ 0. , 0. , 1. ])

References ---------- .. 1 : B.N. Parlett and C. Reinsch, 'Balancing a Matrix for Calculation of Eigenvalues and Eigenvectors', Numerische Mathematik, Vol.13(4), 1969, DOI:10.1007/BF02165404

.. 2 : R. James, J. Langou, B.R. Lowery, 'On matrix balancing and eigenvector computation', 2014, Available online: https://arxiv.org/abs/1401.5766

.. 3 : D.S. Watkins. A case where balancing is harmful. Electron. Trans. Numer. Anal, Vol.23, 2006.

val pinv : ?cond:Py.Object.t -> ?rcond:Py.Object.t -> ?return_rank:bool -> ?check_finite:bool -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * int

Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate a generalized inverse of a matrix using a least-squares solver.

Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. cond, rcond : float, optional Cutoff factor for 'small' singular values. In `lstsq`, singular values less than ``cond*largest_singular_value`` will be considered as zero. If both are omitted, the default value ``max(M, N) * eps`` is passed to `lstsq` where ``eps`` is the corresponding machine precision value of the datatype of ``a``.

.. versionchanged:: 1.3.0 Previously the default cutoff value was just `eps` without the factor ``max(M, N)``.

return_rank : bool, optional if True, return the effective rank of the matrix check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns ------- B : (N, M) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if return_rank == True

Raises ------ LinAlgError If computation does not converge.

Examples -------- >>> from scipy import linalg >>> a = np.random.randn(9, 6) >>> B = linalg.pinv(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True

val pinv2 : ?cond:Py.Object.t -> ?rcond:Py.Object.t -> ?return_rank:bool -> ?check_finite:bool -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * int

Compute the (Moore-Penrose) pseudo-inverse of a matrix.

Calculate a generalized inverse of a matrix using its singular-value decomposition and including all 'large' singular values.

Parameters ---------- a : (M, N) array_like Matrix to be pseudo-inverted. cond, rcond : float or None Cutoff for 'small' singular values; singular values smaller than this value are considered as zero. If both are omitted, the default value ``max(M,N)*largest_singular_value*eps`` is used where ``eps`` is the machine precision value of the datatype of ``a``.

.. versionchanged:: 1.3.0 Previously the default cutoff value was just ``eps*f`` where ``f`` was ``1e3`` for single precision and ``1e6`` for double precision.

return_rank : bool, optional If True, return the effective rank of the matrix. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns ------- B : (N, M) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if `return_rank` is True.

Raises ------ LinAlgError If SVD computation does not converge.

Examples -------- >>> from scipy import linalg >>> a = np.random.randn(9, 6) >>> B = linalg.pinv2(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True

val pinvh : ?cond:Py.Object.t -> ?rcond:Py.Object.t -> ?lower:bool -> ?return_rank:bool -> ?check_finite:bool -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * int

Compute the (Moore-Penrose) pseudo-inverse of a Hermitian matrix.

Calculate a generalized inverse of a Hermitian or real symmetric matrix using its eigenvalue decomposition and including all eigenvalues with 'large' absolute value.

Parameters ---------- a : (N, N) array_like Real symmetric or complex hermetian matrix to be pseudo-inverted cond, rcond : float or None Cutoff for 'small' singular values; singular values smaller than this value are considered as zero. If both are omitted, the default ``max(M,N)*largest_eigenvalue*eps`` is used where ``eps`` is the machine precision value of the datatype of ``a``.

.. versionchanged:: 1.3.0 Previously the default cutoff value was just ``eps*f`` where ``f`` was ``1e3`` for single precision and ``1e6`` for double precision.

lower : bool, optional Whether the pertinent array data is taken from the lower or upper triangle of `a`. (Default: lower) return_rank : bool, optional If True, return the effective rank of the matrix. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns ------- B : (N, N) ndarray The pseudo-inverse of matrix `a`. rank : int The effective rank of the matrix. Returned if `return_rank` is True.

Raises ------ LinAlgError If eigenvalue does not converge

Examples -------- >>> from scipy.linalg import pinvh >>> a = np.random.randn(9, 6) >>> a = np.dot(a, a.T) >>> B = pinvh(a) >>> np.allclose(a, np.dot(a, np.dot(B, a))) True >>> np.allclose(B, np.dot(B, np.dot(a, B))) True

val solve : ?sym_pos:bool -> ?lower:bool -> ?overwrite_a:bool -> ?overwrite_b:bool -> ?debug:Py.Object.t -> ?check_finite:bool -> ?assume_a:string -> ?transposed:bool -> a:[> `Ndarray ] Np.Obj.t -> b:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Solves the linear equation set ``a * x = b`` for the unknown ``x`` for square ``a`` matrix.

If the data matrix is known to be a particular type then supplying the corresponding string to ``assume_a`` key chooses the dedicated solver. The available options are

=================== ======== generic matrix 'gen' symmetric 'sym' hermitian 'her' positive definite 'pos' =================== ========

If omitted, ``'gen'`` is the default structure.

The datatype of the arrays define which solver is called regardless of the values. In other words, even when the complex array entries have precisely zero imaginary parts, the complex solver will be called based on the data type of the array.

Parameters ---------- a : (N, N) array_like Square input data b : (N, NRHS) array_like Input data for the right hand side. sym_pos : bool, optional Assume `a` is symmetric and positive definite. This key is deprecated and assume_a = 'pos' keyword is recommended instead. The functionality is the same. It will be removed in the future. lower : bool, optional If True, only the data contained in the lower triangle of `a`. Default is to use upper triangle. (ignored for ``'gen'``) overwrite_a : bool, optional Allow overwriting data in `a` (may enhance performance). Default is False. overwrite_b : bool, optional Allow overwriting data in `b` (may enhance performance). Default is False. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs. assume_a : str, optional Valid entries are explained above. transposed: bool, optional If True, ``a^T x = b`` for real matrices, raises `NotImplementedError` for complex matrices (only for True).

Returns ------- x : (N, NRHS) ndarray The solution array.

Raises ------ ValueError If size mismatches detected or input a is not square. LinAlgError If the matrix is singular. LinAlgWarning If an ill-conditioned input a is detected. NotImplementedError If transposed is True and input a is a complex matrix.

Examples -------- Given `a` and `b`, solve for `x`:

>>> a = np.array([3, 2, 0], [1, -1, 0], [0, 5, 1]) >>> b = np.array(2, 4, -1) >>> from scipy import linalg >>> x = linalg.solve(a, b) >>> x array( 2., -2., 9.) >>> np.dot(a, x) == b array( True, True, True, dtype=bool)

Notes ----- If the input b matrix is a 1-D array with N elements, when supplied together with an NxN input a, it is assumed as a valid column vector despite the apparent size mismatch. This is compatible with the numpy.dot() behavior and the returned result is still 1-D array.

The generic, symmetric, hermitian and positive definite solutions are obtained via calling ?GESV, ?SYSV, ?HESV, and ?POSV routines of LAPACK respectively.

val solve_banded : ?overwrite_ab:bool -> ?overwrite_b:bool -> ?debug:Py.Object.t -> ?check_finite:bool -> l_and_u:Py.Object.t -> ab:Py.Object.t -> b:Py.Object.t -> unit -> Py.Object.t

Solve the equation a x = b for x, assuming a is banded matrix.

The matrix a is stored in `ab` using the matrix diagonal ordered form::

abu + i - j, j == ai,j

Example of `ab` (shape of a is (6,6), `u` =1, `l` =2)::

* a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * *

Parameters ---------- (l, u) : (integer, integer) Number of non-zero lower and upper diagonals ab : (`l` + `u` + 1, M) array_like Banded matrix b : (M,) or (M, K) array_like Right-hand side overwrite_ab : bool, optional Discard data in `ab` (may enhance performance) overwrite_b : bool, optional Discard data in `b` (may enhance performance) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns ------- x : (M,) or (M, K) ndarray The solution to the system a x = b. Returned shape depends on the shape of `b`.

Examples -------- Solve the banded system a x = b, where::

5 2 -1 0 0 0 1 4 2 -1 0 1 a = 0 1 3 2 -1 b = 2 0 0 1 2 2 2 0 0 0 1 1 3

There is one nonzero diagonal below the main diagonal (l = 1), and two above (u = 2). The diagonal banded form of the matrix is::

* * -1 -1 -1 ab = * 2 2 2 2 5 4 3 2 1 1 1 1 1 *

>>> from scipy.linalg import solve_banded >>> ab = np.array([0, 0, -1, -1, -1], ... [0, 2, 2, 2, 2], ... [5, 4, 3, 2, 1], ... [1, 1, 1, 1, 0]) >>> b = np.array(0, 1, 2, 2, 3) >>> x = solve_banded((1, 2), ab, b) >>> x array(-2.37288136, 3.93220339, -4. , 4.3559322 , -1.3559322 )

val solve_circulant : ?singular:string -> ?tol:float -> ?caxis:int -> ?baxis:int -> ?outaxis:int -> c:[> `Ndarray ] Np.Obj.t -> b:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Solve C x = b for x, where C is a circulant matrix.

`C` is the circulant matrix associated with the vector `c`.

The system is solved by doing division in Fourier space. The calculation is::

x = ifft(fft(b) / fft(c))

where `fft` and `ifft` are the fast Fourier transform and its inverse, respectively. For a large vector `c`, this is *much* faster than solving the system with the full circulant matrix.

Parameters ---------- c : array_like The coefficients of the circulant matrix. b : array_like Right-hand side matrix in ``a x = b``. singular : str, optional This argument controls how a near singular circulant matrix is handled. If `singular` is 'raise' and the circulant matrix is near singular, a `LinAlgError` is raised. If `singular` is 'lstsq', the least squares solution is returned. Default is 'raise'. tol : float, optional If any eigenvalue of the circulant matrix has an absolute value that is less than or equal to `tol`, the matrix is considered to be near singular. If not given, `tol` is set to::

tol = abs_eigs.max() * abs_eigs.size * np.finfo(np.float64).eps

where `abs_eigs` is the array of absolute values of the eigenvalues of the circulant matrix. caxis : int When `c` has dimension greater than 1, it is viewed as a collection of circulant vectors. In this case, `caxis` is the axis of `c` that holds the vectors of circulant coefficients. baxis : int When `b` has dimension greater than 1, it is viewed as a collection of vectors. In this case, `baxis` is the axis of `b` that holds the right-hand side vectors. outaxis : int When `c` or `b` are multidimensional, the value returned by `solve_circulant` is multidimensional. In this case, `outaxis` is the axis of the result that holds the solution vectors.

Returns ------- x : ndarray Solution to the system ``C x = b``.

Raises ------ LinAlgError If the circulant matrix associated with `c` is near singular.

See Also -------- circulant : circulant matrix

Notes ----- For a 1-D vector `c` with length `m`, and an array `b` with shape ``(m, ...)``,

solve_circulant(c, b)

returns the same result as

solve(circulant(c), b)

where `solve` and `circulant` are from `scipy.linalg`.

.. versionadded:: 0.16.0

Examples -------- >>> from scipy.linalg import solve_circulant, solve, circulant, lstsq

>>> c = np.array(2, 2, 4) >>> b = np.array(1, 2, 3) >>> solve_circulant(c, b) array( 0.75, -0.25, 0.25)

Compare that result to solving the system with `scipy.linalg.solve`:

>>> solve(circulant(c), b) array( 0.75, -0.25, 0.25)

A singular example:

>>> c = np.array(1, 1, 0, 0) >>> b = np.array(1, 2, 3, 4)

Calling ``solve_circulant(c, b)`` will raise a `LinAlgError`. For the least square solution, use the option ``singular='lstsq'``:

>>> solve_circulant(c, b, singular='lstsq') array( 0.25, 1.25, 2.25, 1.25)

Compare to `scipy.linalg.lstsq`:

>>> x, resid, rnk, s = lstsq(circulant(c), b) >>> x array( 0.25, 1.25, 2.25, 1.25)

A broadcasting example:

Suppose we have the vectors of two circulant matrices stored in an array with shape (2, 5), and three `b` vectors stored in an array with shape (3, 5). For example,

>>> c = np.array([1.5, 2, 3, 0, 0], [1, 1, 4, 3, 2]) >>> b = np.arange(15).reshape(-1, 5)

We want to solve all combinations of circulant matrices and `b` vectors, with the result stored in an array with shape (2, 3, 5). When we disregard the axes of `c` and `b` that hold the vectors of coefficients, the shapes of the collections are (2,) and (3,), respectively, which are not compatible for broadcasting. To have a broadcast result with shape (2, 3), we add a trivial dimension to `c`: ``c:, np.newaxis, :`` has shape (2, 1, 5). The last dimension holds the coefficients of the circulant matrices, so when we call `solve_circulant`, we can use the default ``caxis=-1``. The coefficients of the `b` vectors are in the last dimension of the array `b`, so we use ``baxis=-1``. If we use the default `outaxis`, the result will have shape (5, 2, 3), so we'll use ``outaxis=-1`` to put the solution vectors in the last dimension.

>>> x = solve_circulant(c:, np.newaxis, :, b, baxis=-1, outaxis=-1) >>> x.shape (2, 3, 5) >>> np.set_printoptions(precision=3) # For compact output of numbers. >>> x array([[-0.118, 0.22 , 1.277, -0.142, 0.302], [ 0.651, 0.989, 2.046, 0.627, 1.072], [ 1.42 , 1.758, 2.816, 1.396, 1.841]], [[ 0.401, 0.304, 0.694, -0.867, 0.377], [ 0.856, 0.758, 1.149, -0.412, 0.831], [ 1.31 , 1.213, 1.603, 0.042, 1.286]])

Check by solving one pair of `c` and `b` vectors (cf. ``x1, 1, :``):

>>> solve_circulant(c1, b1, :) array( 0.856, 0.758, 1.149, -0.412, 0.831)

val solve_toeplitz : ?check_finite:bool -> c_or_cr: [ `Ndarray of [> `Ndarray ] Np.Obj.t | `Tuple_of_array_like_array_like_ of Py.Object.t ] -> b:Py.Object.t -> unit -> Py.Object.t

Solve a Toeplitz system using Levinson Recursion

The Toeplitz matrix has constant diagonals, with c as its first column and r as its first row. If r is not given, ``r == conjugate(c)`` is assumed.

Parameters ---------- c_or_cr : array_like or tuple of (array_like, array_like) The vector ``c``, or a tuple of arrays (``c``, ``r``). Whatever the actual shape of ``c``, it will be converted to a 1-D array. If not supplied, ``r = conjugate(c)`` is assumed; in this case, if c0 is real, the Toeplitz matrix is Hermitian. r0 is ignored; the first row of the Toeplitz matrix is ``c[0], r[1:]``. Whatever the actual shape of ``r``, it will be converted to a 1-D array. b : (M,) or (M, K) array_like Right-hand side in ``T x = b``. check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (result entirely NaNs) if the inputs do contain infinities or NaNs.

Returns ------- x : (M,) or (M, K) ndarray The solution to the system ``T x = b``. Shape of return matches shape of `b`.

See Also -------- toeplitz : Toeplitz matrix

Notes ----- The solution is computed using Levinson-Durbin recursion, which is faster than generic least-squares methods, but can be less numerically stable.

Examples -------- Solve the Toeplitz system T x = b, where::

1 -1 -2 -3 1 T = 3 1 -1 -2 b = 2 6 3 1 -1 2 10 6 3 1 5

To specify the Toeplitz matrix, only the first column and the first row are needed.

>>> c = np.array(1, 3, 6, 10) # First column of T >>> r = np.array(1, -1, -2, -3) # First row of T >>> b = np.array(1, 2, 2, 5)

>>> from scipy.linalg import solve_toeplitz, toeplitz >>> x = solve_toeplitz((c, r), b) >>> x array( 1.66666667, -1. , -2.66666667, 2.33333333)

Check the result by creating the full Toeplitz matrix and multiplying it by `x`. We should get `b`.

>>> T = toeplitz(c, r) >>> T.dot(x) array( 1., 2., 2., 5.)

val solve_triangular : ?trans:[ `C | `Two | `Zero | `One | `T | `N ] -> ?lower:bool -> ?unit_diagonal:bool -> ?overwrite_b:bool -> ?debug:Py.Object.t -> ?check_finite:bool -> a:[> `Ndarray ] Np.Obj.t -> b:Py.Object.t -> unit -> Py.Object.t

Solve the equation `a x = b` for `x`, assuming a is a triangular matrix.

Parameters ---------- a : (M, M) array_like A triangular matrix b : (M,) or (M, N) array_like Right-hand side matrix in `a x = b` lower : bool, optional Use only data contained in the lower triangle of `a`. Default is to use upper triangle. trans :

, 1, 2, 'N', 'T', 'C'

, optional Type of system to solve:

======== ========= trans system ======== ========= 0 or 'N' a x = b 1 or 'T' a^T x = b 2 or 'C' a^H x = b ======== ========= unit_diagonal : bool, optional If True, diagonal elements of `a` are assumed to be 1 and will not be referenced. overwrite_b : bool, optional Allow overwriting data in `b` (may enhance performance) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns ------- x : (M,) or (M, N) ndarray Solution to the system `a x = b`. Shape of return matches `b`.

Raises ------ LinAlgError If `a` is singular

Notes ----- .. versionadded:: 0.9.0

Examples -------- Solve the lower triangular system a x = b, where::

3 0 0 0 4 a = 2 1 0 0 b = 2 1 0 1 0 4 1 1 1 1 2

>>> from scipy.linalg import solve_triangular >>> a = np.array([3, 0, 0, 0], [2, 1, 0, 0], [1, 0, 1, 0], [1, 1, 1, 1]) >>> b = np.array(4, 2, 4, 2) >>> x = solve_triangular(a, b, lower=True) >>> x array( 1.33333333, -0.66666667, 2.66666667, -1.33333333) >>> a.dot(x) # Check the result array( 4., 2., 4., 2.)

val solveh_banded : ?overwrite_ab:bool -> ?overwrite_b:bool -> ?lower:bool -> ?check_finite:bool -> ab:Py.Object.t -> b:Py.Object.t -> unit -> Py.Object.t

Solve equation a x = b. a is Hermitian positive-definite banded matrix.

The matrix a is stored in `ab` either in lower diagonal or upper diagonal ordered form:

abu + i - j, j == ai,j (if upper form; i <= j) ab i - j, j == ai,j (if lower form; i >= j)

Example of `ab` (shape of a is (6, 6), `u` =2)::

upper form: * * a02 a13 a24 a35 * a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55

lower form: a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * *

Cells marked with * are not used.

Parameters ---------- ab : (`u` + 1, M) array_like Banded matrix b : (M,) or (M, K) array_like Right-hand side overwrite_ab : bool, optional Discard data in `ab` (may enhance performance) overwrite_b : bool, optional Discard data in `b` (may enhance performance) lower : bool, optional Is the matrix in the lower form. (Default is upper form) check_finite : bool, optional Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns ------- x : (M,) or (M, K) ndarray The solution to the system a x = b. Shape of return matches shape of `b`.

Examples -------- Solve the banded system A x = b, where::

4 2 -1 0 0 0 1 2 5 2 -1 0 0 2 A = -1 2 6 2 -1 0 b = 2 0 -1 2 7 2 -1 3 0 0 -1 2 8 2 3 0 0 0 -1 2 9 3

>>> from scipy.linalg import solveh_banded

`ab` contains the main diagonal and the nonzero diagonals below the main diagonal. That is, we use the lower form:

>>> ab = np.array([ 4, 5, 6, 7, 8, 9], ... [ 2, 2, 2, 2, 2, 0], ... [-1, -1, -1, -1, 0, 0]) >>> b = np.array(1, 2, 2, 3, 3, 3) >>> x = solveh_banded(ab, b, lower=True) >>> x array( 0.03431373, 0.45938375, 0.05602241, 0.47759104, 0.17577031, 0.34733894)

Solve the Hermitian banded system H x = b, where::

8 2-1j 0 0 1 H = 2+1j 5 1j 0 b = 1+1j 0 -1j 9 -2-1j 1-2j 0 0 -2+1j 6 0

In this example, we put the upper diagonals in the array `hb`:

>>> hb = np.array([0, 2-1j, 1j, -2-1j], ... [8, 5, 9, 6 ]) >>> b = np.array(1, 1+1j, 1-2j, 0) >>> x = solveh_banded(hb, b) >>> x array( 0.07318536-0.02939412j, 0.11877624+0.17696461j, 0.10077984-0.23035393j, -0.00479904-0.09358128j)

val warn : ?category:Py.Object.t -> ?stacklevel:Py.Object.t -> ?source:Py.Object.t -> message:Py.Object.t -> unit -> Py.Object.t

Issue a warning, or maybe ignore it or raise an exception.

OCaml

Innovation. Community. Security.