package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `RectSphereBivariateSpline
]
type t = [ `Object | `RectSphereBivariateSpline ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val create : ?s:float -> ?pole_continuity:[ `T_bool_bool_ of Py.Object.t | `Bool of bool ] -> ?pole_values:[ `F of float | `Tuple of float * float ] -> ?pole_exact:[ `T_bool_bool_ of Py.Object.t | `Bool of bool ] -> ?pole_flat:[ `T_bool_bool_ of Py.Object.t | `Bool of bool ] -> u:[> `Ndarray ] Np.Obj.t -> v:[> `Ndarray ] Np.Obj.t -> r:[> `Ndarray ] Np.Obj.t -> unit -> t

Bivariate spline approximation over a rectangular mesh on a sphere.

Can be used for smoothing data.

.. versionadded:: 0.11.0

Parameters ---------- u : array_like 1-D array of colatitude coordinates in strictly ascending order. Coordinates must be given in radians and lie within the interval ``0, pi``. v : array_like 1-D array of longitude coordinates in strictly ascending order. Coordinates must be given in radians. First element (``v0``) must lie within the interval ``-pi, pi)``. Last element (``v[-1]``) must satisfy ``v[-1] <= v[0] + 2*pi``. r : array_like 2-D array of data with shape ``(u.size, v.size)``. s : float, optional Positive smoothing factor defined for estimation condition (``s=0`` is for interpolation). pole_continuity : bool or (bool, bool), optional Order of continuity at the poles ``u=0`` (``pole_continuity[0]``) and ``u=pi`` (``pole_continuity[1]``). The order of continuity at the pole will be 1 or 0 when this is True or False, respectively. Defaults to False. pole_values : float or (float, float), optional Data values at the poles ``u=0`` and ``u=pi``. Either the whole parameter or each individual element can be None. Defaults to None. pole_exact : bool or (bool, bool), optional Data value exactness at the poles ``u=0`` and ``u=pi``. If True, the value is considered to be the right function value, and it will be fitted exactly. If False, the value will be considered to be a data value just like the other data values. Defaults to False. pole_flat : bool or (bool, bool), optional For the poles at ``u=0`` and ``u=pi``, specify whether or not the approximation has vanishing derivatives. Defaults to False. See Also -------- RectBivariateSpline : bivariate spline approximation over a rectangular mesh Notes ----- Currently, only the smoothing spline approximation (``iopt[0] = 0`` and ``iopt[0] = 1`` in the FITPACK routine) is supported. The exact least-squares spline approximation is not implemented yet. When actually performing the interpolation, the requested `v` values must lie within the same length 2pi interval that the original `v` values were chosen from. For more information, see the FITPACK_ site about this function. .. _FITPACK: http://www.netlib.org/dierckx/spgrid.f Examples -------- Suppose we have global data on a coarse grid >>> lats = np.linspace(10, 170, 9) * np.pi / 180. >>> lons = np.linspace(0, 350, 18) * np.pi / 180. >>> data = np.dot(np.atleast_2d(90. - np.linspace(-80., 80., 18)).T, ... np.atleast_2d(180. - np.abs(np.linspace(0., 350., 9)))).T We want to interpolate it to a global one-degree grid >>> new_lats = np.linspace(1, 180, 180) * np.pi / 180 >>> new_lons = np.linspace(1, 360, 360) * np.pi / 180 >>> new_lats, new_lons = np.meshgrid(new_lats, new_lons) We need to set up the interpolator object >>> from scipy.interpolate import RectSphereBivariateSpline >>> lut = RectSphereBivariateSpline(lats, lons, data) Finally we interpolate the data. The `RectSphereBivariateSpline` object only takes 1-D arrays as input, therefore we need to do some reshaping. >>> data_interp = lut.ev(new_lats.ravel(), ... new_lons.ravel()).reshape((360, 180)).T Looking at the original and the interpolated data, one can see that the interpolant reproduces the original data very well: >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax1 = fig.add_subplot(211) >>> ax1.imshow(data, interpolation='nearest') >>> ax2 = fig.add_subplot(212) >>> ax2.imshow(data_interp, interpolation='nearest') >>> plt.show() Choosing the optimal value of ``s`` can be a delicate task. Recommended values for ``s`` depend on the accuracy of the data values. If the user has an idea of the statistical errors on the data, she can also find a proper estimate for ``s``. By assuming that, if she specifies the right ``s``, the interpolator will use a spline ``f(u,v)`` which exactly reproduces the function underlying the data, she can evaluate ``sum((r(i,j)-s(u(i),v(j)))**2)`` to find a good estimate for this ``s``. For example, if she knows that the statistical errors on her ``r(i,j)``-values are not greater than 0.1, she may expect that a good ``s`` should have a value not larger than ``u.size * v.size * (0.1)**2``. If nothing is known about the statistical error in ``r(i,j)``, ``s`` must be determined by trial and error. The best is then to start with a very large value of ``s`` (to determine the least-squares polynomial and the corresponding upper bound ``fp0`` for ``s``) and then to progressively decrease the value of ``s`` (say by a factor 10 in the beginning, i.e. ``s = fp0 / 10, fp0 / 100, ...`` and more carefully as the approximation shows more detail) to obtain closer fits. The interpolation results for different values of ``s`` give some insight into this process: >>> fig2 = plt.figure() >>> s = [3e9, 2e9, 1e9, 1e8] >>> for ii in range(len(s)): ... lut = RectSphereBivariateSpline(lats, lons, data, s=s[ii]) ... data_interp = lut.ev(new_lats.ravel(), ... new_lons.ravel()).reshape((360, 180)).T ... ax = fig2.add_subplot(2, 2, ii+1) ... ax.imshow(data_interp, interpolation='nearest') ... ax.set_title('s = %g' % s[ii]) >>> plt.show()

val ev : ?dtheta:int -> ?dphi:int -> theta:Py.Object.t -> phi:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Evaluate the spline at points

Returns the interpolated value at ``(thetai, phii), i=0,...,len(theta)-1``.

Parameters ---------- theta, phi : array_like Input coordinates. Standard Numpy broadcasting is obeyed. dtheta : int, optional Order of theta-derivative

.. versionadded:: 0.14.0 dphi : int, optional Order of phi-derivative

.. versionadded:: 0.14.0

val get_coeffs : [> tag ] Obj.t -> Py.Object.t

Return spline coefficients.

val get_knots : [> tag ] Obj.t -> Py.Object.t

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. The position of interior and additional knots are given as tk+1:-k-1 and t:k+1=b, t-k-1:=e, respectively.

val get_residual : [> tag ] Obj.t -> Py.Object.t

Return weighted sum of squared residuals of the spline approximation: sum ((wi*(zi-s(xi,yi)))**2,axis=0)

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.