package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `SphereBivariateSpline
]
type t = [ `Object | `SphereBivariateSpline ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val create : unit -> t

Bivariate spline s(x,y) of degrees 3 on a sphere, calculated from a given set of data points (theta,phi,r).

.. versionadded:: 0.11.0

See Also -------- bisplrep, bisplev : an older wrapping of FITPACK UnivariateSpline : a similar class for univariate spline interpolation SmoothUnivariateSpline : to create a BivariateSpline through the given points LSQUnivariateSpline : to create a BivariateSpline using weighted least-squares fitting

val ev : ?dtheta:int -> ?dphi:int -> theta:Py.Object.t -> phi:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Evaluate the spline at points

Returns the interpolated value at ``(thetai, phii), i=0,...,len(theta)-1``.

Parameters ---------- theta, phi : array_like Input coordinates. Standard Numpy broadcasting is obeyed. dtheta : int, optional Order of theta-derivative

.. versionadded:: 0.14.0 dphi : int, optional Order of phi-derivative

.. versionadded:: 0.14.0

val get_coeffs : [> tag ] Obj.t -> Py.Object.t

Return spline coefficients.

val get_knots : [> tag ] Obj.t -> Py.Object.t

Return a tuple (tx,ty) where tx,ty contain knots positions of the spline with respect to x-, y-variable, respectively. The position of interior and additional knots are given as tk+1:-k-1 and t:k+1=b, t-k-1:=e, respectively.

val get_residual : [> tag ] Obj.t -> Py.Object.t

Return weighted sum of squared residuals of the spline approximation: sum ((wi*(zi-s(xi,yi)))**2,axis=0)

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.