package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val get_py : string -> Py.Object.t

Get an attribute of this module as a Py.Object.t. This is useful to pass a Python function to another function.

module Bunch : sig ... end
module LinearTimeInvariant : sig ... end
module StateSpaceContinuous : sig ... end
module StateSpaceDiscrete : sig ... end
module TransferFunctionContinuous : sig ... end
module TransferFunctionDiscrete : sig ... end
module ZerosPolesGainContinuous : sig ... end
module ZerosPolesGainDiscrete : sig ... end
val abcd_normalize : ?a:Py.Object.t -> ?b:Py.Object.t -> ?c:Py.Object.t -> ?d:Py.Object.t -> unit -> Py.Object.t

Check state-space matrices and ensure they are 2-D.

If enough information on the system is provided, that is, enough properly-shaped arrays are passed to the function, the missing ones are built from this information, ensuring the correct number of rows and columns. Otherwise a ValueError is raised.

Parameters ---------- A, B, C, D : array_like, optional State-space matrices. All of them are None (missing) by default. See `ss2tf` for format.

Returns ------- A, B, C, D : array Properly shaped state-space matrices.

Raises ------ ValueError If not enough information on the system was provided.

val asarray : ?dtype:Np.Dtype.t -> ?order:[ `C | `F ] -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Convert the input to an array.

Parameters ---------- a : array_like Input data, in any form that can be converted to an array. This includes lists, lists of tuples, tuples, tuples of tuples, tuples of lists and ndarrays. dtype : data-type, optional By default, the data-type is inferred from the input data. order : 'C', 'F', optional Whether to use row-major (C-style) or column-major (Fortran-style) memory representation. Defaults to 'C'.

Returns ------- out : ndarray Array interpretation of `a`. No copy is performed if the input is already an ndarray with matching dtype and order. If `a` is a subclass of ndarray, a base class ndarray is returned.

See Also -------- asanyarray : Similar function which passes through subclasses. ascontiguousarray : Convert input to a contiguous array. asfarray : Convert input to a floating point ndarray. asfortranarray : Convert input to an ndarray with column-major memory order. asarray_chkfinite : Similar function which checks input for NaNs and Infs. fromiter : Create an array from an iterator. fromfunction : Construct an array by executing a function on grid positions.

Examples -------- Convert a list into an array:

>>> a = 1, 2 >>> np.asarray(a) array(1, 2)

Existing arrays are not copied:

>>> a = np.array(1, 2) >>> np.asarray(a) is a True

If `dtype` is set, array is copied only if dtype does not match:

>>> a = np.array(1, 2, dtype=np.float32) >>> np.asarray(a, dtype=np.float32) is a True >>> np.asarray(a, dtype=np.float64) is a False

Contrary to `asanyarray`, ndarray subclasses are not passed through:

>>> issubclass(np.recarray, np.ndarray) True >>> a = np.array((1.0, 2), (3.0, 4), dtype='f4,i4').view(np.recarray) >>> np.asarray(a) is a False >>> np.asanyarray(a) is a True

val atleast_1d : Py.Object.t list -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Convert inputs to arrays with at least one dimension.

Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved.

Parameters ---------- arys1, arys2, ... : array_like One or more input arrays.

Returns ------- ret : ndarray An array, or list of arrays, each with ``a.ndim >= 1``. Copies are made only if necessary.

See Also -------- atleast_2d, atleast_3d

Examples -------- >>> np.atleast_1d(1.0) array(1.)

>>> x = np.arange(9.0).reshape(3,3) >>> np.atleast_1d(x) array([0., 1., 2.], [3., 4., 5.], [6., 7., 8.]) >>> np.atleast_1d(x) is x True

>>> np.atleast_1d(1, 3, 4) array([1]), array([3, 4])

val atleast_2d : Py.Object.t list -> Py.Object.t

View inputs as arrays with at least two dimensions.

Parameters ---------- arys1, arys2, ... : array_like One or more array-like sequences. Non-array inputs are converted to arrays. Arrays that already have two or more dimensions are preserved.

Returns ------- res, res2, ... : ndarray An array, or list of arrays, each with ``a.ndim >= 2``. Copies are avoided where possible, and views with two or more dimensions are returned.

See Also -------- atleast_1d, atleast_3d

Examples -------- >>> np.atleast_2d(3.0) array([3.])

>>> x = np.arange(3.0) >>> np.atleast_2d(x) array([0., 1., 2.]) >>> np.atleast_2d(x).base is x True

>>> np.atleast_2d(1, 1, 2, [1, 2]) array([[1]]), array([[1, 2]]), array([[1, 2]])

val bode : ?w:[> `Ndarray ] Np.Obj.t -> ?n:int -> system:Py.Object.t -> unit -> Py.Object.t * Py.Object.t * Py.Object.t

Calculate Bode magnitude and phase data of a continuous-time system.

Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D)

w : array_like, optional Array of frequencies (in rad/s). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system.

Returns ------- w : 1D ndarray Frequency array rad/s mag : 1D ndarray Magnitude array dB phase : 1D ndarray Phase array deg

Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``1, 3, 5``).

.. versionadded:: 0.11.0

Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt

>>> sys = signal.TransferFunction(1, 1, 1) >>> w, mag, phase = signal.bode(sys)

>>> plt.figure() >>> plt.semilogx(w, mag) # Bode magnitude plot >>> plt.figure() >>> plt.semilogx(w, phase) # Bode phase plot >>> plt.show()

val cont2discrete : ?method_:string -> ?alpha:Py.Object.t -> system:Py.Object.t -> dt:float -> unit -> Py.Object.t

Transform a continuous to a discrete state-space system.

Parameters ---------- system : a tuple describing the system or an instance of `lti` The following gives the number of elements in the tuple and the interpretation:

* 1: (instance of `lti`) * 2: (num, den) * 3: (zeros, poles, gain) * 4: (A, B, C, D)

dt : float The discretization time step. method : str, optional Which method to use:

* gbt: generalized bilinear transformation * bilinear: Tustin's approximation ('gbt' with alpha=0.5) * euler: Euler (or forward differencing) method ('gbt' with alpha=0) * backward_diff: Backwards differencing ('gbt' with alpha=1.0) * zoh: zero-order hold (default) * foh: first-order hold ( *versionadded: 1.3.0* ) * impulse: equivalent impulse response ( *versionadded: 1.3.0* )

alpha : float within 0, 1, optional The generalized bilinear transformation weighting parameter, which should only be specified with method='gbt', and is ignored otherwise

Returns ------- sysd : tuple containing the discrete system Based on the input type, the output will be of the form

* (num, den, dt) for transfer function input * (zeros, poles, gain, dt) for zeros-poles-gain input * (A, B, C, D, dt) for state-space system input

Notes ----- By default, the routine uses a Zero-Order Hold (zoh) method to perform the transformation. Alternatively, a generalized bilinear transformation may be used, which includes the common Tustin's bilinear approximation, an Euler's method technique, or a backwards differencing technique.

The Zero-Order Hold (zoh) method is based on 1_, the generalized bilinear approximation is based on 2_ and 3_, the First-Order Hold (foh) method is based on 4_.

References ---------- .. 1 https://en.wikipedia.org/wiki/Discretization#Discretization_of_linear_state_space_models

.. 2 http://techteach.no/publications/discretetime_signals_systems/discrete.pdf

.. 3 G. Zhang, X. Chen, and T. Chen, Digital redesign via the generalized bilinear transformation, Int. J. Control, vol. 82, no. 4, pp. 741-754, 2009. (https://www.mypolyuweb.hk/~magzhang/Research/ZCC09_IJC.pdf)

.. 4 G. F. Franklin, J. D. Powell, and M. L. Workman, Digital control of dynamic systems, 3rd ed. Menlo Park, Calif: Addison-Wesley, pp. 204-206, 1998.

val dbode : ?w:[> `Ndarray ] Np.Obj.t -> ?n:int -> system:Py.Object.t -> unit -> Py.Object.t * Py.Object.t * Py.Object.t

Calculate Bode magnitude and phase data of a discrete-time system.

Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1 (instance of `dlti`) * 2 (num, den, dt) * 3 (zeros, poles, gain, dt) * 4 (A, B, C, D, dt)

w : array_like, optional Array of frequencies (in radians/sample). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system.

Returns ------- w : 1D ndarray Frequency array rad/time_unit mag : 1D ndarray Magnitude array dB phase : 1D ndarray Phase array deg

Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``z^2 + 3z + 5`` would be represented as ``1, 3, 5``).

.. versionadded:: 0.18.0

Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt

Transfer function: H(z) = 1 / (z^2 + 2z + 3)

>>> sys = signal.TransferFunction(1, 1, 2, 3, dt=0.05)

Equivalent: sys.bode()

>>> w, mag, phase = signal.dbode(sys)

>>> plt.figure() >>> plt.semilogx(w, mag) # Bode magnitude plot >>> plt.figure() >>> plt.semilogx(w, phase) # Bode phase plot >>> plt.show()

val dfreqresp : ?w:[> `Ndarray ] Np.Obj.t -> ?n:int -> ?whole:bool -> system:Py.Object.t -> unit -> Py.Object.t * Py.Object.t

Calculate the frequency response of a discrete-time system.

Parameters ---------- system : an instance of the `dlti` class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1 (instance of `dlti`) * 2 (numerator, denominator, dt) * 3 (zeros, poles, gain, dt) * 4 (A, B, C, D, dt)

w : array_like, optional Array of frequencies (in radians/sample). Magnitude and phase data is calculated for every value in this array. If not given a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system. whole : bool, optional Normally, if 'w' is not given, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to 2*pi radians/sample.

Returns ------- w : 1D ndarray Frequency array radians/sample H : 1D ndarray Array of complex magnitude values

Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``z^2 + 3z + 5`` would be represented as ``1, 3, 5``).

.. versionadded:: 0.18.0

Examples -------- Generating the Nyquist plot of a transfer function

>>> from scipy import signal >>> import matplotlib.pyplot as plt

Transfer function: H(z) = 1 / (z^2 + 2z + 3)

>>> sys = signal.TransferFunction(1, 1, 2, 3, dt=0.05)

>>> w, H = signal.dfreqresp(sys)

>>> plt.figure() >>> plt.plot(H.real, H.imag, 'b') >>> plt.plot(H.real, -H.imag, 'r') >>> plt.show()

val dimpulse : ?x0:[> `Ndarray ] Np.Obj.t -> ?t:[> `Ndarray ] Np.Obj.t -> ?n:int -> system:Py.Object.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * Py.Object.t

Impulse response of discrete-time system.

Parameters ---------- system : tuple of array_like or instance of `dlti` A tuple describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1: (instance of `dlti`) * 3: (num, den, dt) * 4: (zeros, poles, gain, dt) * 5: (A, B, C, D, dt)

x0 : array_like, optional Initial state-vector. Defaults to zero. t : array_like, optional Time points. Computed if not given. n : int, optional The number of time points to compute (if `t` is not given).

Returns ------- tout : ndarray Time values for the output, as a 1-D array. yout : tuple of ndarray Impulse response of system. Each element of the tuple represents the output of the system based on an impulse in each input.

See Also -------- impulse, dstep, dlsim, cont2discrete

Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt

>>> butter = signal.dlti( *signal.butter(3, 0.5)) >>> t, y = signal.dimpulse(butter, n=25) >>> plt.step(t, np.squeeze(y)) >>> plt.grid() >>> plt.xlabel('n samples') >>> plt.ylabel('Amplitude')

val dlsim : ?t:[> `Ndarray ] Np.Obj.t -> ?x0:[> `Ndarray ] Np.Obj.t -> system:Py.Object.t -> u:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Simulate output of a discrete-time linear system.

Parameters ---------- system : tuple of array_like or instance of `dlti` A tuple describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1: (instance of `dlti`) * 3: (num, den, dt) * 4: (zeros, poles, gain, dt) * 5: (A, B, C, D, dt)

u : array_like An input array describing the input at each time `t` (interpolation is assumed between given times). If there are multiple inputs, then each column of the rank-2 array represents an input. t : array_like, optional The time steps at which the input is defined. If `t` is given, it must be the same length as `u`, and the final value in `t` determines the number of steps returned in the output. x0 : array_like, optional The initial conditions on the state vector (zero by default).

Returns ------- tout : ndarray Time values for the output, as a 1-D array. yout : ndarray System response, as a 1-D array. xout : ndarray, optional Time-evolution of the state-vector. Only generated if the input is a `StateSpace` system.

See Also -------- lsim, dstep, dimpulse, cont2discrete

Examples -------- A simple integrator transfer function with a discrete time step of 1.0 could be implemented as:

>>> from scipy import signal >>> tf = (1.0,, 1.0, -1.0, 1.0) >>> t_in = 0.0, 1.0, 2.0, 3.0 >>> u = np.asarray(0.0, 0.0, 1.0, 1.0) >>> t_out, y = signal.dlsim(tf, u, t=t_in) >>> y.T array([ 0., 0., 0., 1.])

val dot : ?out:[> `Ndarray ] Np.Obj.t -> a:[> `Ndarray ] Np.Obj.t -> b:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

dot(a, b, out=None)

Dot product of two arrays. Specifically,

  • If both `a` and `b` are 1-D arrays, it is inner product of vectors (without complex conjugation).
  • If both `a` and `b` are 2-D arrays, it is matrix multiplication, but using :func:`matmul` or ``a @ b`` is preferred.
  • If either `a` or `b` is 0-D (scalar), it is equivalent to :func:`multiply` and using ``numpy.multiply(a, b)`` or ``a * b`` is preferred.
  • If `a` is an N-D array and `b` is a 1-D array, it is a sum product over the last axis of `a` and `b`.
  • If `a` is an N-D array and `b` is an M-D array (where ``M>=2``), it is a sum product over the last axis of `a` and the second-to-last axis of `b`::

dot(a, b)i,j,k,m = sum(ai,j,: * bk,:,m)

Parameters ---------- a : array_like First argument. b : array_like Second argument. out : ndarray, optional Output argument. This must have the exact kind that would be returned if it was not used. In particular, it must have the right type, must be C-contiguous, and its dtype must be the dtype that would be returned for `dot(a,b)`. This is a performance feature. Therefore, if these conditions are not met, an exception is raised, instead of attempting to be flexible.

Returns ------- output : ndarray Returns the dot product of `a` and `b`. If `a` and `b` are both scalars or both 1-D arrays then a scalar is returned; otherwise an array is returned. If `out` is given, then it is returned.

Raises ------ ValueError If the last dimension of `a` is not the same size as the second-to-last dimension of `b`.

See Also -------- vdot : Complex-conjugating dot product. tensordot : Sum products over arbitrary axes. einsum : Einstein summation convention. matmul : '@' operator as method with out parameter.

Examples -------- >>> np.dot(3, 4) 12

Neither argument is complex-conjugated:

>>> np.dot(2j, 3j, 2j, 3j) (-13+0j)

For 2-D arrays it is the matrix product:

>>> a = [1, 0], [0, 1] >>> b = [4, 1], [2, 2] >>> np.dot(a, b) array([4, 1], [2, 2])

>>> a = np.arange(3*4*5*6).reshape((3,4,5,6)) >>> b = np.arange(3*4*5*6)::-1.reshape((5,4,6,3)) >>> np.dot(a, b)2,3,2,1,2,2 499128 >>> sum(a2,3,2,: * b1,2,:,2) 499128

val dstep : ?x0:[> `Ndarray ] Np.Obj.t -> ?t:[> `Ndarray ] Np.Obj.t -> ?n:int -> system:Py.Object.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * Py.Object.t

Step response of discrete-time system.

Parameters ---------- system : tuple of array_like A tuple describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1: (instance of `dlti`) * 3: (num, den, dt) * 4: (zeros, poles, gain, dt) * 5: (A, B, C, D, dt)

x0 : array_like, optional Initial state-vector. Defaults to zero. t : array_like, optional Time points. Computed if not given. n : int, optional The number of time points to compute (if `t` is not given).

Returns ------- tout : ndarray Output time points, as a 1-D array. yout : tuple of ndarray Step response of system. Each element of the tuple represents the output of the system based on a step response to each input.

See Also -------- step, dimpulse, dlsim, cont2discrete

Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt

>>> butter = signal.dlti( *signal.butter(3, 0.5)) >>> t, y = signal.dstep(butter, n=25) >>> plt.step(t, np.squeeze(y)) >>> plt.grid() >>> plt.xlabel('n samples') >>> plt.ylabel('Amplitude')

val freqresp : ?w:[> `Ndarray ] Np.Obj.t -> ?n:int -> system:Py.Object.t -> unit -> Py.Object.t * Py.Object.t

Calculate the frequency response of a continuous-time system.

Parameters ---------- system : an instance of the `lti` class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D)

w : array_like, optional Array of frequencies (in rad/s). Magnitude and phase data is calculated for every value in this array. If not given, a reasonable set will be calculated. n : int, optional Number of frequency points to compute if `w` is not given. The `n` frequencies are logarithmically spaced in an interval chosen to include the influence of the poles and zeros of the system.

Returns ------- w : 1D ndarray Frequency array rad/s H : 1D ndarray Array of complex magnitude values

Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``1, 3, 5``).

Examples -------- Generating the Nyquist plot of a transfer function

>>> from scipy import signal >>> import matplotlib.pyplot as plt

Transfer function: H(s) = 5 / (s-1)^3

>>> s1 = signal.ZerosPolesGain(, 1, 1, 1, 5)

>>> w, H = signal.freqresp(s1)

>>> plt.figure() >>> plt.plot(H.real, H.imag, 'b') >>> plt.plot(H.real, -H.imag, 'r') >>> plt.show()

val freqs : ?worN:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `I of int | `None ] -> ?plot:Py.Object.t -> b:[> `Ndarray ] Np.Obj.t -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Compute frequency response of analog filter.

Given the M-order numerator `b` and N-order denominator `a` of an analog filter, compute its frequency response::

b0*(jw)**M + b1*(jw)**(M-1) + ... + bM H(w) = ---------------------------------------------- a0*(jw)**N + a1*(jw)**(N-1) + ... + aN

Parameters ---------- b : array_like Numerator of a linear filter. a : array_like Denominator of a linear filter. worN : None, int, array_like, optional If None, then compute at 200 frequencies around the interesting parts of the response curve (determined by pole-zero locations). If a single integer, then compute at that many frequencies. Otherwise, compute the response at the angular frequencies (e.g., rad/s) given in `worN`. plot : callable, optional A callable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqs`.

Returns ------- w : ndarray The angular frequencies at which `h` was computed. h : ndarray The frequency response.

See Also -------- freqz : Compute the frequency response of a digital filter.

Notes ----- Using Matplotlib's 'plot' function as the callable for `plot` produces unexpected results, this plots the real part of the complex transfer function, not the magnitude. Try ``lambda w, h: plot(w, abs(h))``.

Examples -------- >>> from scipy.signal import freqs, iirfilter

>>> b, a = iirfilter(4, 1, 10, 1, 60, analog=True, ftype='cheby1')

>>> w, h = freqs(b, a, worN=np.logspace(-1, 2, 1000))

>>> import matplotlib.pyplot as plt >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.xlabel('Frequency') >>> plt.ylabel('Amplitude response dB') >>> plt.grid() >>> plt.show()

val freqs_zpk : ?worN:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `I of int | `None ] -> z:[> `Ndarray ] Np.Obj.t -> p:[> `Ndarray ] Np.Obj.t -> k:[ `F of float | `I of int | `Bool of bool | `S of string ] -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Compute frequency response of analog filter.

Given the zeros `z`, poles `p`, and gain `k` of a filter, compute its frequency response::

(jw-z0) * (jw-z1) * ... * (jw-z-1) H(w) = k * ---------------------------------------- (jw-p0) * (jw-p1) * ... * (jw-p-1)

Parameters ---------- z : array_like Zeroes of a linear filter p : array_like Poles of a linear filter k : scalar Gain of a linear filter worN : None, int, array_like, optional If None, then compute at 200 frequencies around the interesting parts of the response curve (determined by pole-zero locations). If a single integer, then compute at that many frequencies. Otherwise, compute the response at the angular frequencies (e.g., rad/s) given in `worN`.

Returns ------- w : ndarray The angular frequencies at which `h` was computed. h : ndarray The frequency response.

See Also -------- freqs : Compute the frequency response of an analog filter in TF form freqz : Compute the frequency response of a digital filter in TF form freqz_zpk : Compute the frequency response of a digital filter in ZPK form

Notes ----- .. versionadded:: 0.19.0

Examples -------- >>> from scipy.signal import freqs_zpk, iirfilter

>>> z, p, k = iirfilter(4, 1, 10, 1, 60, analog=True, ftype='cheby1', ... output='zpk')

>>> w, h = freqs_zpk(z, p, k, worN=np.logspace(-1, 2, 1000))

>>> import matplotlib.pyplot as plt >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.xlabel('Frequency') >>> plt.ylabel('Amplitude response dB') >>> plt.grid() >>> plt.show()

val freqz : ?a:[> `Ndarray ] Np.Obj.t -> ?worN:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `I of int | `None ] -> ?whole:bool -> ?plot:Py.Object.t -> ?fs:float -> ?include_nyquist:bool -> b:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Compute the frequency response of a digital filter.

Given the M-order numerator `b` and N-order denominator `a` of a digital filter, compute its frequency response::

jw -jw -jwM jw B(e ) b0 + b1e + ... + bMe H(e ) = ------ = ----------------------------------- jw -jw -jwN A(e ) a0 + a1e + ... + aNe

Parameters ---------- b : array_like Numerator of a linear filter. If `b` has dimension greater than 1, it is assumed that the coefficients are stored in the first dimension, and ``b.shape1:``, ``a.shape1:``, and the shape of the frequencies array must be compatible for broadcasting. a : array_like Denominator of a linear filter. If `b` has dimension greater than 1, it is assumed that the coefficients are stored in the first dimension, and ``b.shape1:``, ``a.shape1:``, and the shape of the frequencies array must be compatible for broadcasting. worN : None, int, array_like, optional If a single integer, then compute at that many frequencies (default is N=512). This is a convenient alternative to::

np.linspace(0, fs if whole else fs/2, N, endpoint=include_nyquist)

Using a number that is fast for FFT computations can result in faster computations (see Notes).

If an array_like, compute the response at the frequencies given. These are in the same units as `fs`. whole : bool, optional Normally, frequencies are computed from 0 to the Nyquist frequency, fs/2 (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to fs. Ignored if w is array_like. plot : callable A callable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqz`. fs : float, optional The sampling frequency of the digital system. Defaults to 2*pi radians/sample (so w is from 0 to pi).

.. versionadded:: 1.2.0 include_nyquist : bool, optional If `whole` is False and `worN` is an integer, setting `include_nyquist` to True will include the last frequency (Nyquist frequency) and is otherwise ignored.

.. versionadded:: 1.5.0

Returns ------- w : ndarray The frequencies at which `h` was computed, in the same units as `fs`. By default, `w` is normalized to the range 0, pi) (radians/sample). h : ndarray The frequency response, as complex numbers. See Also -------- freqz_zpk sosfreqz Notes ----- Using Matplotlib's :func:`matplotlib.pyplot.plot` function as the callable for `plot` produces unexpected results, as this plots the real part of the complex transfer function, not the magnitude. Try ``lambda w, h: plot(w, np.abs(h))``. A direct computation via (R)FFT is used to compute the frequency response when the following conditions are met: 1. An integer value is given for `worN`. 2. `worN` is fast to compute via FFT (i.e., `next_fast_len(worN) <scipy.fft.next_fast_len>` equals `worN`). 3. The denominator coefficients are a single value (``a.shape[0] == 1``). 4. `worN` is at least as long as the numerator coefficients (``worN >= b.shape[0]``). 5. If ``b.ndim > 1``, then ``b.shape[-1] == 1``. For long FIR filters, the FFT approach can have lower error and be much faster than the equivalent direct polynomial calculation. Examples -------- >>> from scipy import signal >>> b = signal.firwin(80, 0.5, window=('kaiser', 8)) >>> w, h = signal.freqz(b) >>> import matplotlib.pyplot as plt >>> fig, ax1 = plt.subplots() >>> ax1.set_title('Digital filter frequency response') >>> ax1.plot(w, 20 * np.log10(abs(h)), 'b') >>> ax1.set_ylabel('Amplitude [dB]', color='b') >>> ax1.set_xlabel('Frequency [rad/sample]') >>> ax2 = ax1.twinx() >>> angles = np.unwrap(np.angle(h)) >>> ax2.plot(w, angles, 'g') >>> ax2.set_ylabel('Angle (radians)', color='g') >>> ax2.grid() >>> ax2.axis('tight') >>> plt.show() Broadcasting Examples Suppose we have two FIR filters whose coefficients are stored in the rows of an array with shape (2, 25). For this demonstration, we'll use random data: >>> np.random.seed(42) >>> b = np.random.rand(2, 25) To compute the frequency response for these two filters with one call to `freqz`, we must pass in ``b.T``, because `freqz` expects the first axis to hold the coefficients. We must then extend the shape with a trivial dimension of length 1 to allow broadcasting with the array of frequencies. That is, we pass in ``b.T[..., np.newaxis]``, which has shape (25, 2, 1): >>> w, h = signal.freqz(b.T[..., np.newaxis], worN=1024) >>> w.shape (1024,) >>> h.shape (2, 1024) Now, suppose we have two transfer functions, with the same numerator coefficients ``b = [0.5, 0.5]``. The coefficients for the two denominators are stored in the first dimension of the 2-D array `a`:: a = [ 1 1 ] [ -0.25, -0.5 ] >>> b = np.array([0.5, 0.5]) >>> a = np.array([[1, 1], [-0.25, -0.5]]) Only `a` is more than 1-D. To make it compatible for broadcasting with the frequencies, we extend it with a trivial dimension in the call to `freqz`: >>> w, h = signal.freqz(b, a[..., np.newaxis], worN=1024) >>> w.shape (1024,) >>> h.shape (2, 1024)

val freqz_zpk : ?worN:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `I of int | `None ] -> ?whole:bool -> ?fs:float -> z:[> `Ndarray ] Np.Obj.t -> p:[> `Ndarray ] Np.Obj.t -> k:[ `F of float | `I of int | `Bool of bool | `S of string ] -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Compute the frequency response of a digital filter in ZPK form.

Given the Zeros, Poles and Gain of a digital filter, compute its frequency response:

:math:`H(z)=k \prod_i (z - Zi) / \prod_j (z - Pj)`

where :math:`k` is the `gain`, :math:`Z` are the `zeros` and :math:`P` are the `poles`.

Parameters ---------- z : array_like Zeroes of a linear filter p : array_like Poles of a linear filter k : scalar Gain of a linear filter worN : None, int, array_like, optional If a single integer, then compute at that many frequencies (default is N=512).

If an array_like, compute the response at the frequencies given. These are in the same units as `fs`. whole : bool, optional Normally, frequencies are computed from 0 to the Nyquist frequency, fs/2 (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to fs. Ignored if w is array_like. fs : float, optional The sampling frequency of the digital system. Defaults to 2*pi radians/sample (so w is from 0 to pi).

.. versionadded:: 1.2.0

Returns ------- w : ndarray The frequencies at which `h` was computed, in the same units as `fs`. By default, `w` is normalized to the range 0, pi) (radians/sample). h : ndarray The frequency response, as complex numbers. See Also -------- freqs : Compute the frequency response of an analog filter in TF form freqs_zpk : Compute the frequency response of an analog filter in ZPK form freqz : Compute the frequency response of a digital filter in TF form Notes ----- .. versionadded:: 0.19.0 Examples -------- Design a 4th-order digital Butterworth filter with cut-off of 100 Hz in a system with sample rate of 1000 Hz, and plot the frequency response: >>> from scipy import signal >>> z, p, k = signal.butter(4, 100, output='zpk', fs=1000) >>> w, h = signal.freqz_zpk(z, p, k, fs=1000) >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> ax1 = fig.add_subplot(1, 1, 1) >>> ax1.set_title('Digital filter frequency response') >>> ax1.plot(w, 20 * np.log10(abs(h)), 'b') >>> ax1.set_ylabel('Amplitude [dB]', color='b') >>> ax1.set_xlabel('Frequency [Hz]') >>> ax1.grid() >>> ax2 = ax1.twinx() >>> angles = np.unwrap(np.angle(h)) >>> ax2.plot(w, angles, 'g') >>> ax2.set_ylabel('Angle [radians]', color='g') >>> plt.axis('tight') >>> plt.show()

val impulse : ?x0:[> `Ndarray ] Np.Obj.t -> ?t:[> `Ndarray ] Np.Obj.t -> ?n:int -> system:Py.Object.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Impulse response of continuous-time system.

Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D)

X0 : array_like, optional Initial state-vector. Defaults to zero. T : array_like, optional Time points. Computed if not given. N : int, optional The number of time points to compute (if `T` is not given).

Returns ------- T : ndarray A 1-D array of time points. yout : ndarray A 1-D array containing the impulse response of the system (except for singularities at zero).

Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``1, 3, 5``).

Examples -------- Compute the impulse response of a second order system with a repeated root: ``x''(t) + 2*x'(t) + x(t) = u(t)``

>>> from scipy import signal >>> system = (1.0, 1.0, 2.0, 1.0) >>> t, y = signal.impulse(system) >>> import matplotlib.pyplot as plt >>> plt.plot(t, y)

val impulse2 : ?x0:Py.Object.t -> ?t:Py.Object.t -> ?n:int -> ?kwargs:(string * Py.Object.t) list -> system:Py.Object.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Impulse response of a single-input, continuous-time linear system.

Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D)

X0 : 1-D array_like, optional The initial condition of the state vector. Default: 0 (the zero vector). T : 1-D array_like, optional The time steps at which the input is defined and at which the output is desired. If `T` is not given, the function will generate a set of time samples automatically. N : int, optional Number of time points to compute. Default: 100. kwargs : various types Additional keyword arguments are passed on to the function `scipy.signal.lsim2`, which in turn passes them on to `scipy.integrate.odeint`; see the latter's documentation for information about these arguments.

Returns ------- T : ndarray The time values for the output. yout : ndarray The output response of the system.

See Also -------- impulse, lsim2, scipy.integrate.odeint

Notes ----- The solution is generated by calling `scipy.signal.lsim2`, which uses the differential equation solver `scipy.integrate.odeint`.

If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``1, 3, 5``).

.. versionadded:: 0.8.0

Examples -------- Compute the impulse response of a second order system with a repeated root: ``x''(t) + 2*x'(t) + x(t) = u(t)``

>>> from scipy import signal >>> system = (1.0, 1.0, 2.0, 1.0) >>> t, y = signal.impulse2(system) >>> import matplotlib.pyplot as plt >>> plt.plot(t, y)

val linspace : ?num:int -> ?endpoint:bool -> ?retstep:bool -> ?dtype:Np.Dtype.t -> ?axis:int -> start:[> `Ndarray ] Np.Obj.t -> stop:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * float

Return evenly spaced numbers over a specified interval.

Returns `num` evenly spaced samples, calculated over the interval `start`, `stop`.

The endpoint of the interval can optionally be excluded.

.. versionchanged:: 1.16.0 Non-scalar `start` and `stop` are now supported.

Parameters ---------- start : array_like The starting value of the sequence. stop : array_like The end value of the sequence, unless `endpoint` is set to False. In that case, the sequence consists of all but the last of ``num + 1`` evenly spaced samples, so that `stop` is excluded. Note that the step size changes when `endpoint` is False. num : int, optional Number of samples to generate. Default is 50. Must be non-negative. endpoint : bool, optional If True, `stop` is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (`samples`, `step`), where `step` is the spacing between samples. dtype : dtype, optional The type of the output array. If `dtype` is not given, infer the data type from the other input arguments.

.. versionadded:: 1.9.0

axis : int, optional The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end.

.. versionadded:: 1.16.0

Returns ------- samples : ndarray There are `num` equally spaced samples in the closed interval ``start, stop`` or the half-open interval ``start, stop)`` (depending on whether `endpoint` is True or False). step : float, optional Only returned if `retstep` is True Size of spacing between samples. See Also -------- arange : Similar to `linspace`, but uses a step size (instead of the number of samples). geomspace : Similar to `linspace`, but with numbers spaced evenly on a log scale (a geometric progression). logspace : Similar to `geomspace`, but with the end points specified as logarithms. Examples -------- >>> np.linspace(2.0, 3.0, num=5) array([2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2, y + 0.5, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show()

val lsim : ?x0:[> `Ndarray ] Np.Obj.t -> ?interp:bool -> system:Py.Object.t -> u:[> `Ndarray ] Np.Obj.t -> t:[> `Ndarray ] Np.Obj.t -> unit -> Py.Object.t * Py.Object.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Simulate output of a continuous-time linear system.

Parameters ---------- system : an instance of the LTI class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1: (instance of `lti`) * 2: (num, den) * 3: (zeros, poles, gain) * 4: (A, B, C, D)

U : array_like An input array describing the input at each time `T` (interpolation is assumed between given times). If there are multiple inputs, then each column of the rank-2 array represents an input. If U = 0 or None, a zero input is used. T : array_like The time steps at which the input is defined and at which the output is desired. Must be nonnegative, increasing, and equally spaced. X0 : array_like, optional The initial conditions on the state vector (zero by default). interp : bool, optional Whether to use linear (True, the default) or zero-order-hold (False) interpolation for the input array.

Returns ------- T : 1D ndarray Time values for the output. yout : 1D ndarray System response. xout : ndarray Time evolution of the state vector.

Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``1, 3, 5``).

Examples -------- We'll use `lsim` to simulate an analog Bessel filter applied to a signal.

>>> from scipy.signal import bessel, lsim >>> import matplotlib.pyplot as plt

Create a low-pass Bessel filter with a cutoff of 12 Hz.

>>> b, a = bessel(N=5, Wn=2*np.pi*12, btype='lowpass', analog=True)

Generate data to which the filter is applied.

>>> t = np.linspace(0, 1.25, 500, endpoint=False)

The input signal is the sum of three sinusoidal curves, with frequencies 4 Hz, 40 Hz, and 80 Hz. The filter should mostly eliminate the 40 Hz and 80 Hz components, leaving just the 4 Hz signal.

>>> u = (np.cos(2*np.pi*4*t) + 0.6*np.sin(2*np.pi*40*t) + ... 0.5*np.cos(2*np.pi*80*t))

Simulate the filter with `lsim`.

>>> tout, yout, xout = lsim((b, a), U=u, T=t)

Plot the result.

>>> plt.plot(t, u, 'r', alpha=0.5, linewidth=1, label='input') >>> plt.plot(tout, yout, 'k', linewidth=1.5, label='output') >>> plt.legend(loc='best', shadow=True, framealpha=1) >>> plt.grid(alpha=0.3) >>> plt.xlabel('t') >>> plt.show()

In a second example, we simulate a double integrator ``y'' = u``, with a constant input ``u = 1``. We'll use the state space representation of the integrator.

>>> from scipy.signal import lti >>> A = np.array([0.0, 1.0], [0.0, 0.0]) >>> B = np.array([0.0], [1.0]) >>> C = np.array([1.0, 0.0]) >>> D = 0.0 >>> system = lti(A, B, C, D)

`t` and `u` define the time and input signal for the system to be simulated.

>>> t = np.linspace(0, 5, num=50) >>> u = np.ones_like(t)

Compute the simulation, and then plot `y`. As expected, the plot shows the curve ``y = 0.5*t**2``.

>>> tout, y, x = lsim(system, u, t) >>> plt.plot(t, y) >>> plt.grid(alpha=0.3) >>> plt.xlabel('t') >>> plt.show()

val lsim2 : ?u:[> `Ndarray ] Np.Obj.t -> ?t:[> `Ndarray ] Np.Obj.t -> ?x0:Py.Object.t -> ?kwargs:(string * Py.Object.t) list -> system:Py.Object.t -> unit -> Py.Object.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Simulate output of a continuous-time linear system, by using the ODE solver `scipy.integrate.odeint`.

Parameters ---------- system : an instance of the `lti` class or a tuple describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1: (instance of `lti`) * 2: (num, den) * 3: (zeros, poles, gain) * 4: (A, B, C, D)

U : array_like (1D or 2D), optional An input array describing the input at each time T. Linear interpolation is used between given times. If there are multiple inputs, then each column of the rank-2 array represents an input. If U is not given, the input is assumed to be zero. T : array_like (1D or 2D), optional The time steps at which the input is defined and at which the output is desired. The default is 101 evenly spaced points on the interval 0,10.0. X0 : array_like (1D), optional The initial condition of the state vector. If `X0` is not given, the initial conditions are assumed to be 0. kwargs : dict Additional keyword arguments are passed on to the function `odeint`. See the notes below for more details.

Returns ------- T : 1D ndarray The time values for the output. yout : ndarray The response of the system. xout : ndarray The time-evolution of the state-vector.

Notes ----- This function uses `scipy.integrate.odeint` to solve the system's differential equations. Additional keyword arguments given to `lsim2` are passed on to `odeint`. See the documentation for `scipy.integrate.odeint` for the full list of arguments.

If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``1, 3, 5``).

See Also -------- lsim

Examples -------- We'll use `lsim2` to simulate an analog Bessel filter applied to a signal.

>>> from scipy.signal import bessel, lsim2 >>> import matplotlib.pyplot as plt

Create a low-pass Bessel filter with a cutoff of 12 Hz.

>>> b, a = bessel(N=5, Wn=2*np.pi*12, btype='lowpass', analog=True)

Generate data to which the filter is applied.

>>> t = np.linspace(0, 1.25, 500, endpoint=False)

The input signal is the sum of three sinusoidal curves, with frequencies 4 Hz, 40 Hz, and 80 Hz. The filter should mostly eliminate the 40 Hz and 80 Hz components, leaving just the 4 Hz signal.

>>> u = (np.cos(2*np.pi*4*t) + 0.6*np.sin(2*np.pi*40*t) + ... 0.5*np.cos(2*np.pi*80*t))

Simulate the filter with `lsim2`.

>>> tout, yout, xout = lsim2((b, a), U=u, T=t)

Plot the result.

>>> plt.plot(t, u, 'r', alpha=0.5, linewidth=1, label='input') >>> plt.plot(tout, yout, 'k', linewidth=1.5, label='output') >>> plt.legend(loc='best', shadow=True, framealpha=1) >>> plt.grid(alpha=0.3) >>> plt.xlabel('t') >>> plt.show()

In a second example, we simulate a double integrator ``y'' = u``, with a constant input ``u = 1``. We'll use the state space representation of the integrator.

>>> from scipy.signal import lti >>> A = np.array([0, 1], [0, 0]) >>> B = np.array([0], [1]) >>> C = np.array([1, 0]) >>> D = 0 >>> system = lti(A, B, C, D)

`t` and `u` define the time and input signal for the system to be simulated.

>>> t = np.linspace(0, 5, num=50) >>> u = np.ones_like(t)

Compute the simulation, and then plot `y`. As expected, the plot shows the curve ``y = 0.5*t**2``.

>>> tout, y, x = lsim2(system, u, t) >>> plt.plot(t, y) >>> plt.grid(alpha=0.3) >>> plt.xlabel('t') >>> plt.show()

val nan_to_num : ?copy:bool -> ?nan:[ `F of float | `I of int ] -> ?posinf:[ `F of float | `I of int ] -> ?neginf:[ `F of float | `I of int ] -> x: [ `Bool of bool | `F of float | `S of string | `Ndarray of [> `Ndarray ] Np.Obj.t | `I of int ] -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Replace NaN with zero and infinity with large finite numbers (default behaviour) or with the numbers defined by the user using the `nan`, `posinf` and/or `neginf` keywords.

If `x` is inexact, NaN is replaced by zero or by the user defined value in `nan` keyword, infinity is replaced by the largest finite floating point values representable by ``x.dtype`` or by the user defined value in `posinf` keyword and -infinity is replaced by the most negative finite floating point values representable by ``x.dtype`` or by the user defined value in `neginf` keyword.

For complex dtypes, the above is applied to each of the real and imaginary components of `x` separately.

If `x` is not inexact, then no replacements are made.

Parameters ---------- x : scalar or array_like Input data. copy : bool, optional Whether to create a copy of `x` (True) or to replace values in-place (False). The in-place operation only occurs if casting to an array does not require a copy. Default is True.

.. versionadded:: 1.13 nan : int, float, optional Value to be used to fill NaN values. If no value is passed then NaN values will be replaced with 0.0.

.. versionadded:: 1.17 posinf : int, float, optional Value to be used to fill positive infinity values. If no value is passed then positive infinity values will be replaced with a very large number.

.. versionadded:: 1.17 neginf : int, float, optional Value to be used to fill negative infinity values. If no value is passed then negative infinity values will be replaced with a very small (or negative) number.

.. versionadded:: 1.17

Returns ------- out : ndarray `x`, with the non-finite values replaced. If `copy` is False, this may be `x` itself.

See Also -------- isinf : Shows which elements are positive or negative infinity. isneginf : Shows which elements are negative infinity. isposinf : Shows which elements are positive infinity. isnan : Shows which elements are Not a Number (NaN). isfinite : Shows which elements are finite (not NaN, not infinity)

Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity.

Examples -------- >>> np.nan_to_num(np.inf) 1.7976931348623157e+308 >>> np.nan_to_num(-np.inf) -1.7976931348623157e+308 >>> np.nan_to_num(np.nan) 0.0 >>> x = np.array(np.inf, -np.inf, np.nan, -128, 128) >>> np.nan_to_num(x) array( 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary -1.28000000e+002, 1.28000000e+002) >>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333) array( 3.3333333e+07, 3.3333333e+07, -9.9990000e+03, -1.2800000e+02, 1.2800000e+02) >>> y = np.array(complex(np.inf, np.nan), np.nan, complex(np.nan, np.inf)) array( 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, # may vary -1.28000000e+002, 1.28000000e+002) >>> np.nan_to_num(y) array( 1.79769313e+308 +0.00000000e+000j, # may vary 0.00000000e+000 +0.00000000e+000j, 0.00000000e+000 +1.79769313e+308j) >>> np.nan_to_num(y, nan=111111, posinf=222222) array(222222.+111111.j, 111111. +0.j, 111111.+222222.j)

val normalize : b:[> `Ndarray ] Np.Obj.t -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * Py.Object.t

Normalize numerator/denominator of a continuous-time transfer function.

If values of `b` are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted.

Parameters ---------- b: array_like Numerator of the transfer function. Can be a 2-D array to normalize multiple transfer functions. a: array_like Denominator of the transfer function. At most 1-D.

Returns ------- num: array The numerator of the normalized transfer function. At least a 1-D array. A 2-D array if the input `num` is a 2-D array. den: 1-D array The denominator of the normalized transfer function.

Notes ----- Coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., ``s^2 + 3s + 5`` would be represented as ``1, 3, 5``).

val ones : ?dtype:Np.Dtype.t -> ?order:[ `C | `F ] -> shape:[ `I of int | `Is of int list ] -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return a new array of given shape and type, filled with ones.

Parameters ---------- shape : int or sequence of ints Shape of the new array, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional The desired data-type for the array, e.g., `numpy.int8`. Default is `numpy.float64`. order : 'C', 'F', optional, default: C Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.

Returns ------- out : ndarray Array of ones with the given shape, dtype, and order.

See Also -------- ones_like : Return an array of ones with shape and type of input. empty : Return a new uninitialized array. zeros : Return a new array setting values to zero. full : Return a new array of given shape filled with value.

Examples -------- >>> np.ones(5) array(1., 1., 1., 1., 1.)

>>> np.ones((5,), dtype=int) array(1, 1, 1, 1, 1)

>>> np.ones((2, 1)) array([1.], [1.])

>>> s = (2,2) >>> np.ones(s) array([1., 1.], [1., 1.])

val place_poles : ?method_:[ `YT | `KNV0 ] -> ?rtol:float -> ?maxiter:int -> a:Py.Object.t -> b:Py.Object.t -> poles:[> `Ndarray ] Np.Obj.t -> unit -> Py.Object.t * Py.Object.t * Py.Object.t * Py.Object.t * float * int

Compute K such that eigenvalues (A - dot(B, K))=poles.

K is the gain matrix such as the plant described by the linear system ``AX+BU`` will have its closed-loop poles, i.e the eigenvalues ``A - B*K``, as close as possible to those asked for in poles.

SISO, MISO and MIMO systems are supported.

Parameters ---------- A, B : ndarray State-space representation of linear system ``AX + BU``. poles : array_like Desired real poles and/or complex conjugates poles. Complex poles are only supported with ``method='YT'`` (default). method: 'YT', 'KNV0', optional Which method to choose to find the gain matrix K. One of:

  • 'YT': Yang Tits
  • 'KNV0': Kautsky, Nichols, Van Dooren update method 0

See References and Notes for details on the algorithms. rtol: float, optional After each iteration the determinant of the eigenvectors of ``A - B*K`` is compared to its previous value, when the relative error between these two values becomes lower than `rtol` the algorithm stops. Default is 1e-3. maxiter: int, optional Maximum number of iterations to compute the gain matrix. Default is 30.

Returns ------- full_state_feedback : Bunch object full_state_feedback is composed of: gain_matrix : 1-D ndarray The closed loop matrix K such as the eigenvalues of ``A-BK`` are as close as possible to the requested poles. computed_poles : 1-D ndarray The poles corresponding to ``A-BK`` sorted as first the real poles in increasing order, then the complex congugates in lexicographic order. requested_poles : 1-D ndarray The poles the algorithm was asked to place sorted as above, they may differ from what was achieved. X : 2-D ndarray The transfer matrix such as ``X * diag(poles) = (A - B*K)*X`` (see Notes) rtol : float The relative tolerance achieved on ``det(X)`` (see Notes). `rtol` will be NaN if it is possible to solve the system ``diag(poles) = (A - B*K)``, or 0 when the optimization algorithms can't do anything i.e when ``B.shape1 == 1``. nb_iter : int The number of iterations performed before converging. `nb_iter` will be NaN if it is possible to solve the system ``diag(poles) = (A - B*K)``, or 0 when the optimization algorithms can't do anything i.e when ``B.shape1 == 1``.

Notes ----- The Tits and Yang (YT), 2_ paper is an update of the original Kautsky et al. (KNV) paper 1_. KNV relies on rank-1 updates to find the transfer matrix X such that ``X * diag(poles) = (A - B*K)*X``, whereas YT uses rank-2 updates. This yields on average more robust solutions (see 2_ pp 21-22), furthermore the YT algorithm supports complex poles whereas KNV does not in its original version. Only update method 0 proposed by KNV has been implemented here, hence the name ``'KNV0'``.

KNV extended to complex poles is used in Matlab's ``place`` function, YT is distributed under a non-free licence by Slicot under the name ``robpole``. It is unclear and undocumented how KNV0 has been extended to complex poles (Tits and Yang claim on page 14 of their paper that their method can not be used to extend KNV to complex poles), therefore only YT supports them in this implementation.

As the solution to the problem of pole placement is not unique for MIMO systems, both methods start with a tentative transfer matrix which is altered in various way to increase its determinant. Both methods have been proven to converge to a stable solution, however depending on the way the initial transfer matrix is chosen they will converge to different solutions and therefore there is absolutely no guarantee that using ``'KNV0'`` will yield results similar to Matlab's or any other implementation of these algorithms.

Using the default method ``'YT'`` should be fine in most cases; ``'KNV0'`` is only provided because it is needed by ``'YT'`` in some specific cases. Furthermore ``'YT'`` gives on average more robust results than ``'KNV0'`` when ``abs(det(X))`` is used as a robustness indicator.

2_ is available as a technical report on the following URL: https://hdl.handle.net/1903/5598

References ---------- .. 1 J. Kautsky, N.K. Nichols and P. van Dooren, 'Robust pole assignment in linear state feedback', International Journal of Control, Vol. 41 pp. 1129-1155, 1985. .. 2 A.L. Tits and Y. Yang, 'Globally convergent algorithms for robust pole assignment by state feedback', IEEE Transactions on Automatic Control, Vol. 41, pp. 1432-1452, 1996.

Examples -------- A simple example demonstrating real pole placement using both KNV and YT algorithms. This is example number 1 from section 4 of the reference KNV publication (1_):

>>> from scipy import signal >>> import matplotlib.pyplot as plt

>>> A = np.array([ 1.380, -0.2077, 6.715, -5.676 ], ... [-0.5814, -4.290, 0, 0.6750 ], ... [ 1.067, 4.273, -6.654, 5.893 ], ... [ 0.0480, 4.273, 1.343, -2.104 ]) >>> B = np.array([ 0, 5.679 ], ... [ 1.136, 1.136 ], ... [ 0, 0, ], ... [-3.146, 0 ]) >>> P = np.array(-0.2, -0.5, -5.0566, -8.6659)

Now compute K with KNV method 0, with the default YT method and with the YT method while forcing 100 iterations of the algorithm and print some results after each call.

>>> fsf1 = signal.place_poles(A, B, P, method='KNV0') >>> fsf1.gain_matrix array([ 0.20071427, -0.96665799, 0.24066128, -0.10279785], [ 0.50587268, 0.57779091, 0.51795763, -0.41991442])

>>> fsf2 = signal.place_poles(A, B, P) # uses YT method >>> fsf2.computed_poles array(-8.6659, -5.0566, -0.5 , -0.2 )

>>> fsf3 = signal.place_poles(A, B, P, rtol=-1, maxiter=100) >>> fsf3.X array([ 0.52072442+0.j, -0.08409372+0.j, -0.56847937+0.j, 0.74823657+0.j], [-0.04977751+0.j, -0.80872954+0.j, 0.13566234+0.j, -0.29322906+0.j], [-0.82266932+0.j, -0.19168026+0.j, -0.56348322+0.j, -0.43815060+0.j], [ 0.22267347+0.j, 0.54967577+0.j, -0.58387806+0.j, -0.40271926+0.j])

The absolute value of the determinant of X is a good indicator to check the robustness of the results, both ``'KNV0'`` and ``'YT'`` aim at maximizing it. Below a comparison of the robustness of the results above:

>>> abs(np.linalg.det(fsf1.X)) < abs(np.linalg.det(fsf2.X)) True >>> abs(np.linalg.det(fsf2.X)) < abs(np.linalg.det(fsf3.X)) True

Now a simple example for complex poles:

>>> A = np.array([ 0, 7/3., 0, 0 ], ... [ 0, 0, 0, 7/9. ], ... [ 0, 0, 0, 0 ], ... [ 0, 0, 0, 0 ]) >>> B = np.array([ 0, 0 ], ... [ 0, 0 ], ... [ 1, 0 ], ... [ 0, 1 ]) >>> P = np.array(-3, -1, -2-1j, -2+1j) / 3. >>> fsf = signal.place_poles(A, B, P, method='YT')

We can plot the desired and computed poles in the complex plane:

>>> t = np.linspace(0, 2*np.pi, 401) >>> plt.plot(np.cos(t), np.sin(t), 'k--') # unit circle >>> plt.plot(fsf.requested_poles.real, fsf.requested_poles.imag, ... 'wo', label='Desired') >>> plt.plot(fsf.computed_poles.real, fsf.computed_poles.imag, 'bx', ... label='Placed') >>> plt.grid() >>> plt.axis('image') >>> plt.axis(-1.1, 1.1, -1.1, 1.1) >>> plt.legend(bbox_to_anchor=(1.05, 1), loc=2, numpoints=1)

val real : [> `Ndarray ] Np.Obj.t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return the real part of the complex argument.

Parameters ---------- val : array_like Input array.

Returns ------- out : ndarray or scalar The real component of the complex argument. If `val` is real, the type of `val` is used for the output. If `val` has complex elements, the returned type is float.

See Also -------- real_if_close, imag, angle

Examples -------- >>> a = np.array(1+2j, 3+4j, 5+6j) >>> a.real array(1., 3., 5.) >>> a.real = 9 >>> a array(9.+2.j, 9.+4.j, 9.+6.j) >>> a.real = np.array(9, 8, 7) >>> a array(9.+2.j, 8.+4.j, 7.+6.j) >>> np.real(1 + 1j) 1.0

val s_qr : ?overwrite_a:bool -> ?lwork:int -> ?mode:[ `Full | `R | `Economic | `Raw ] -> ?pivoting:bool -> ?check_finite:bool -> a:[> `Ndarray ] Np.Obj.t -> unit -> Py.Object.t * Py.Object.t * Py.Object.t

Compute QR decomposition of a matrix.

Calculate the decomposition ``A = Q R`` where Q is unitary/orthogonal and R upper triangular.

Parameters ---------- a : (M, N) array_like Matrix to be decomposed overwrite_a : bool, optional Whether data in `a` is overwritten (may improve performance if `overwrite_a` is set to True by reusing the existing input data structure rather than creating a new one.) lwork : int, optional Work array size, lwork >= a.shape1. If None or -1, an optimal size is computed. mode : 'full', 'r', 'economic', 'raw', optional Determines what information is to be returned: either both Q and R ('full', default), only R ('r') or both Q and R but computed in economy-size ('economic', see Notes). The final option 'raw' (added in SciPy 0.11) makes the function return two matrices (Q, TAU) in the internal format used by LAPACK. pivoting : bool, optional Whether or not factorization should include pivoting for rank-revealing qr decomposition. If pivoting, compute the decomposition ``A P = Q R`` as above, but where P is chosen such that the diagonal of R is non-increasing. check_finite : bool, optional Whether to check that the input matrix contains only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.

Returns ------- Q : float or complex ndarray Of shape (M, M), or (M, K) for ``mode='economic'``. Not returned if ``mode='r'``. R : float or complex ndarray Of shape (M, N), or (K, N) for ``mode='economic'``. ``K = min(M, N)``. P : int ndarray Of shape (N,) for ``pivoting=True``. Not returned if ``pivoting=False``.

Raises ------ LinAlgError Raised if decomposition fails

Notes ----- This is an interface to the LAPACK routines dgeqrf, zgeqrf, dorgqr, zungqr, dgeqp3, and zgeqp3.

If ``mode=economic``, the shapes of Q and R are (M, K) and (K, N) instead of (M,M) and (M,N), with ``K=min(M,N)``.

Examples -------- >>> from scipy import linalg >>> a = np.random.randn(9, 6)

>>> q, r = linalg.qr(a) >>> np.allclose(a, np.dot(q, r)) True >>> q.shape, r.shape ((9, 9), (9, 6))

>>> r2 = linalg.qr(a, mode='r') >>> np.allclose(r, r2) True

>>> q3, r3 = linalg.qr(a, mode='economic') >>> q3.shape, r3.shape ((9, 6), (6, 6))

>>> q4, r4, p4 = linalg.qr(a, pivoting=True) >>> d = np.abs(np.diag(r4)) >>> np.all(d1: <= d:-1) True >>> np.allclose(a:, p4, np.dot(q4, r4)) True >>> q4.shape, r4.shape, p4.shape ((9, 9), (9, 6), (6,))

>>> q5, r5, p5 = linalg.qr(a, mode='economic', pivoting=True) >>> q5.shape, r5.shape, p5.shape ((9, 6), (6, 6), (6,))

val squeeze : ?axis:int list -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Remove single-dimensional entries from the shape of an array.

Parameters ---------- a : array_like Input data. axis : None or int or tuple of ints, optional .. versionadded:: 1.7.0

Selects a subset of the single-dimensional entries in the shape. If an axis is selected with shape entry greater than one, an error is raised.

Returns ------- squeezed : ndarray The input array, but with all or a subset of the dimensions of length 1 removed. This is always `a` itself or a view into `a`. Note that if all axes are squeezed, the result is a 0d array and not a scalar.

Raises ------ ValueError If `axis` is not None, and an axis being squeezed is not of length 1

See Also -------- expand_dims : The inverse operation, adding singleton dimensions reshape : Insert, remove, and combine dimensions, and resize existing ones

Examples -------- >>> x = np.array([[0], [1], [2]]) >>> x.shape (1, 3, 1) >>> np.squeeze(x).shape (3,) >>> np.squeeze(x, axis=0).shape (3, 1) >>> np.squeeze(x, axis=1).shape Traceback (most recent call last): ... ValueError: cannot select an axis to squeeze out which has size not equal to one >>> np.squeeze(x, axis=2).shape (1, 3) >>> x = np.array([1234]) >>> x.shape (1, 1) >>> np.squeeze(x) array(1234) # 0d array >>> np.squeeze(x).shape () >>> np.squeeze(x)() 1234

val ss2tf : ?input:int -> a:[> `Ndarray ] Np.Obj.t -> b:[> `Ndarray ] Np.Obj.t -> c:[> `Ndarray ] Np.Obj.t -> d:[> `Ndarray ] Np.Obj.t -> unit -> Py.Object.t * Py.Object.t

State-space to transfer function.

A, B, C, D defines a linear state-space system with `p` inputs, `q` outputs, and `n` state variables.

Parameters ---------- A : array_like State (or system) matrix of shape ``(n, n)`` B : array_like Input matrix of shape ``(n, p)`` C : array_like Output matrix of shape ``(q, n)`` D : array_like Feedthrough (or feedforward) matrix of shape ``(q, p)`` input : int, optional For multiple-input systems, the index of the input to use.

Returns ------- num : 2-D ndarray Numerator(s) of the resulting transfer function(s). `num` has one row for each of the system's outputs. Each row is a sequence representation of the numerator polynomial. den : 1-D ndarray Denominator of the resulting transfer function(s). `den` is a sequence representation of the denominator polynomial.

Examples -------- Convert the state-space representation:

.. math::

\dot\textbf{x

}

(t) = \beginmatrix -2 & -1 \\ 1 & 0 \endmatrix \textbfx(t) + \beginmatrix 1 \\ 0 \endmatrix \textbfu(t) \\

\textbfy(t) = \beginmatrix 1 & 2 \endmatrix \textbfx(t) + \beginmatrix 1 \endmatrix \textbfu(t)

>>> A = [-2, -1], [1, 0] >>> B = [1], [0] # 2-D column vector >>> C = [1, 2] # 2-D row vector >>> D = 1

to the transfer function:

.. math:: H(s) = \fracs^2 + 3s + 3s^2 + 2s + 1

>>> from scipy.signal import ss2tf >>> ss2tf(A, B, C, D) (array([1, 3, 3]), array( 1., 2., 1.))

val ss2zpk : ?input:int -> a:[> `Ndarray ] Np.Obj.t -> b:[> `Ndarray ] Np.Obj.t -> c:[> `Ndarray ] Np.Obj.t -> d:[> `Ndarray ] Np.Obj.t -> unit -> float

State-space representation to zero-pole-gain representation.

A, B, C, D defines a linear state-space system with `p` inputs, `q` outputs, and `n` state variables.

Parameters ---------- A : array_like State (or system) matrix of shape ``(n, n)`` B : array_like Input matrix of shape ``(n, p)`` C : array_like Output matrix of shape ``(q, n)`` D : array_like Feedthrough (or feedforward) matrix of shape ``(q, p)`` input : int, optional For multiple-input systems, the index of the input to use.

Returns ------- z, p : sequence Zeros and poles. k : float System gain.

val step : ?x0:[> `Ndarray ] Np.Obj.t -> ?t:[> `Ndarray ] Np.Obj.t -> ?n:int -> system:Py.Object.t -> unit -> Py.Object.t * Py.Object.t

Step response of continuous-time system.

Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D)

X0 : array_like, optional Initial state-vector (default is zero). T : array_like, optional Time points (computed if not given). N : int, optional Number of time points to compute if `T` is not given.

Returns ------- T : 1D ndarray Output time points. yout : 1D ndarray Step response of system.

See also -------- scipy.signal.step2

Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``1, 3, 5``).

Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> lti = signal.lti(1.0, 1.0, 1.0) >>> t, y = signal.step(lti) >>> plt.plot(t, y) >>> plt.xlabel('Time s') >>> plt.ylabel('Amplitude') >>> plt.title('Step response for 1. Order Lowpass') >>> plt.grid()

val step2 : ?x0:[> `Ndarray ] Np.Obj.t -> ?t:[> `Ndarray ] Np.Obj.t -> ?n:int -> ?kwargs:(string * Py.Object.t) list -> system:Py.Object.t -> unit -> Py.Object.t * Py.Object.t

Step response of continuous-time system.

This function is functionally the same as `scipy.signal.step`, but it uses the function `scipy.signal.lsim2` to compute the step response.

Parameters ---------- system : an instance of the LTI class or a tuple of array_like describing the system. The following gives the number of elements in the tuple and the interpretation:

* 1 (instance of `lti`) * 2 (num, den) * 3 (zeros, poles, gain) * 4 (A, B, C, D)

X0 : array_like, optional Initial state-vector (default is zero). T : array_like, optional Time points (computed if not given). N : int, optional Number of time points to compute if `T` is not given. kwargs : various types Additional keyword arguments are passed on the function `scipy.signal.lsim2`, which in turn passes them on to `scipy.integrate.odeint`. See the documentation for `scipy.integrate.odeint` for information about these arguments.

Returns ------- T : 1D ndarray Output time points. yout : 1D ndarray Step response of system.

See also -------- scipy.signal.step

Notes ----- If (num, den) is passed in for ``system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g. ``s^2 + 3s + 5`` would be represented as ``1, 3, 5``).

.. versionadded:: 0.8.0

Examples -------- >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> lti = signal.lti(1.0, 1.0, 1.0) >>> t, y = signal.step2(lti) >>> plt.plot(t, y) >>> plt.xlabel('Time s') >>> plt.ylabel('Amplitude') >>> plt.title('Step response for 1. Order Lowpass') >>> plt.grid()

val tf2ss : num:Py.Object.t -> den:Py.Object.t -> unit -> Py.Object.t

Transfer function to state-space representation.

Parameters ---------- num, den : array_like Sequences representing the coefficients of the numerator and denominator polynomials, in order of descending degree. The denominator needs to be at least as long as the numerator.

Returns ------- A, B, C, D : ndarray State space representation of the system, in controller canonical form.

Examples -------- Convert the transfer function:

.. math:: H(s) = \fracs^2 + 3s + 3s^2 + 2s + 1

>>> num = 1, 3, 3 >>> den = 1, 2, 1

to the state-space representation:

.. math::

\dot\textbf{x

}

(t) = \beginmatrix -2 & -1 \\ 1 & 0 \endmatrix \textbfx(t) + \beginmatrix 1 \\ 0 \endmatrix \textbfu(t) \\

\textbfy(t) = \beginmatrix 1 & 2 \endmatrix \textbfx(t) + \beginmatrix 1 \endmatrix \textbfu(t)

>>> from scipy.signal import tf2ss >>> A, B, C, D = tf2ss(num, den) >>> A array([-2., -1.], [ 1., 0.]) >>> B array([ 1.], [ 0.]) >>> C array([ 1., 2.]) >>> D array([ 1.])

val tf2zpk : b:[> `Ndarray ] Np.Obj.t -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * float

Return zero, pole, gain (z, p, k) representation from a numerator, denominator representation of a linear filter.

Parameters ---------- b : array_like Numerator polynomial coefficients. a : array_like Denominator polynomial coefficients.

Returns ------- z : ndarray Zeros of the transfer function. p : ndarray Poles of the transfer function. k : float System gain.

Notes ----- If some values of `b` are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted.

The `b` and `a` arrays are interpreted as coefficients for positive, descending powers of the transfer function variable. So the inputs :math:`b = b_0, b_1, ..., b_M` and :math:`a =a_0, a_1, ..., a_N` can represent an analog filter of the form:

.. math::

H(s) = \frac _0 s^M + b_1 s^(M-1) + \cdots + b_M a_0 s^N + a_1 s^{(N-1) + \cdots + a_N

}

or a discrete-time filter of the form:

.. math::

H(z) = \frac _0 z^M + b_1 z^(M-1) + \cdots + b_M a_0 z^N + a_1 z^{(N-1) + \cdots + a_N

}

This 'positive powers' form is found more commonly in controls engineering. If `M` and `N` are equal (which is true for all filters generated by the bilinear transform), then this happens to be equivalent to the 'negative powers' discrete-time form preferred in DSP:

.. math::

H(z) = \frac _0 + b_1 z^

1

}

  1. \cdots + b_M z^

    M

}

}

a_0 + a_1 z^{-1 + \cdots + a_N z^

N

}

}

Although this is true for common filters, remember that this is not true in the general case. If `M` and `N` are not equal, the discrete-time transfer function coefficients must first be converted to the 'positive powers' form before finding the poles and zeros.

val transpose : ?axes:Py.Object.t -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Reverse or permute the axes of an array; returns the modified array.

For an array a with two axes, transpose(a) gives the matrix transpose.

Parameters ---------- a : array_like Input array. axes : tuple or list of ints, optional If specified, it must be a tuple or list which contains a permutation of 0,1,..,N-1 where N is the number of axes of a. The i'th axis of the returned array will correspond to the axis numbered ``axesi`` of the input. If not specified, defaults to ``range(a.ndim)::-1``, which reverses the order of the axes.

Returns ------- p : ndarray `a` with its axes permuted. A view is returned whenever possible.

See Also -------- moveaxis argsort

Notes ----- Use `transpose(a, argsort(axes))` to invert the transposition of tensors when using the `axes` keyword argument.

Transposing a 1-D array returns an unchanged view of the original array.

Examples -------- >>> x = np.arange(4).reshape((2,2)) >>> x array([0, 1], [2, 3])

>>> np.transpose(x) array([0, 2], [1, 3])

>>> x = np.ones((1, 2, 3)) >>> np.transpose(x, (1, 0, 2)).shape (2, 1, 3)

val zeros : ?dtype:Np.Dtype.t -> ?order:[ `C | `F ] -> shape:int list -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

zeros(shape, dtype=float, order='C')

Return a new array of given shape and type, filled with zeros.

Parameters ---------- shape : int or tuple of ints Shape of the new array, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional The desired data-type for the array, e.g., `numpy.int8`. Default is `numpy.float64`. order : 'C', 'F', optional, default: 'C' Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.

Returns ------- out : ndarray Array of zeros with the given shape, dtype, and order.

See Also -------- zeros_like : Return an array of zeros with shape and type of input. empty : Return a new uninitialized array. ones : Return a new array setting values to one. full : Return a new array of given shape filled with value.

Examples -------- >>> np.zeros(5) array( 0., 0., 0., 0., 0.)

>>> np.zeros((5,), dtype=int) array(0, 0, 0, 0, 0)

>>> np.zeros((2, 1)) array([ 0.], [ 0.])

>>> s = (2,2) >>> np.zeros(s) array([ 0., 0.], [ 0., 0.])

>>> np.zeros((2,), dtype=('x', 'i4'), ('y', 'i4')) # custom dtype array((0, 0), (0, 0), dtype=('x', '<i4'), ('y', '<i4'))

val zeros_like : ?dtype:Np.Dtype.t -> ?order:[ `A | `F | `PyObject of Py.Object.t ] -> ?subok:bool -> ?shape:[ `I of int | `Is of int list ] -> a:[> `Ndarray ] Np.Obj.t -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return an array of zeros with the same shape and type as a given array.

Parameters ---------- a : array_like The shape and data-type of `a` define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result.

.. versionadded:: 1.6.0 order : 'C', 'F', 'A', or 'K', optional Overrides the memory layout of the result. 'C' means C-order, 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of `a` as closely as possible.

.. versionadded:: 1.6.0 subok : bool, optional. If True, then the newly created array will use the sub-class type of 'a', otherwise it will be a base-class array. Defaults to True. shape : int or sequence of ints, optional. Overrides the shape of the result. If order='K' and the number of dimensions is unchanged, will try to keep order, otherwise, order='C' is implied.

.. versionadded:: 1.17.0

Returns ------- out : ndarray Array of zeros with the same shape and type as `a`.

See Also -------- empty_like : Return an empty array with shape and type of input. ones_like : Return an array of ones with shape and type of input. full_like : Return a new array with shape of input filled with value. zeros : Return a new array setting values to zero.

Examples -------- >>> x = np.arange(6) >>> x = x.reshape((2, 3)) >>> x array([0, 1, 2], [3, 4, 5]) >>> np.zeros_like(x) array([0, 0, 0], [0, 0, 0])

>>> y = np.arange(3, dtype=float) >>> y array(0., 1., 2.) >>> np.zeros_like(y) array(0., 0., 0.)

val zpk2ss : z:Py.Object.t -> p:Py.Object.t -> k:float -> unit -> Py.Object.t

Zero-pole-gain representation to state-space representation

Parameters ---------- z, p : sequence Zeros and poles. k : float System gain.

Returns ------- A, B, C, D : ndarray State space representation of the system, in controller canonical form.

val zpk2tf : z:[> `Ndarray ] Np.Obj.t -> p:[> `Ndarray ] Np.Obj.t -> k:float -> unit -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t * [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return polynomial transfer function representation from zeros and poles

Parameters ---------- z : array_like Zeros of the transfer function. p : array_like Poles of the transfer function. k : float System gain.

Returns ------- b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients.

OCaml

Innovation. Community. Security.