Discrete-time linear time invariant system base class.
Parameters ---------- *system: arguments The `dlti` class can be instantiated with either 2, 3 or 4 arguments. The following gives the number of arguments and the corresponding discrete-time subclass that is created:
* 2: `TransferFunction`: (numerator, denominator) * 3: `ZerosPolesGain`: (zeros, poles, gain) * 4: `StateSpace`: (A, B, C, D)
Each argument can be an array or a sequence. dt: float, optional Sampling time s of the discrete-time systems. Defaults to ``True`` (unspecified sampling time). Must be specified as a keyword argument, for example, ``dt=0.1``.
See Also -------- ZerosPolesGain, StateSpace, TransferFunction, lti
Notes ----- `dlti` instances do not exist directly. Instead, `dlti` creates an instance of one of its subclasses: `StateSpace`, `TransferFunction` or `ZerosPolesGain`.
Changing the value of properties that are not directly part of the current system representation (such as the `zeros` of a `StateSpace` system) is very inefficient and may lead to numerical inaccuracies. It is better to convert to the specific system representation first. For example, call ``sys = sys.to_zpk()`` before accessing/changing the zeros, poles or gain.
If (numerator, denominator) is passed in for ``*system``, coefficients for both the numerator and denominator should be specified in descending exponent order (e.g., ``z^2 + 3z + 5`` would be represented as ``1, 3, 5``).
.. versionadded:: 0.18.0
Examples -------- >>> from scipy import signal
>>> signal.dlti(1, 2, 3, 4) StateSpaceDiscrete( array([1]), array([2]), array([3]), array([4]), dt: True )
>>> signal.dlti(1, 2, 3, 4, dt=0.1) StateSpaceDiscrete( array([1]), array([2]), array([3]), array([4]), dt: 0.1 )
>>> signal.dlti(1, 2, 3, 4, 5, dt=0.1) ZerosPolesGainDiscrete( array(1, 2), array(3, 4), 5, dt: 0.1 )
>>> signal.dlti(3, 4, 1, 2, dt=0.1) TransferFunctionDiscrete( array(3., 4.), array(1., 2.), dt: 0.1 )