package scipy

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `Matrix
]
type t = [ `ArrayLike | `Matrix | `Object ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val create : ?dtype:Np.Dtype.t -> ?copy:bool -> data:[ `Ndarray of [> `Ndarray ] Np.Obj.t | `S of string ] -> unit -> t

matrix(data, dtype=None, copy=True)

.. note:: It is no longer recommended to use this class, even for linear algebra. Instead use regular arrays. The class may be removed in the future.

Returns a matrix from an array-like object, or from a string of data. A matrix is a specialized 2-D array that retains its 2-D nature through operations. It has certain special operators, such as ``*`` (matrix multiplication) and ``**`` (matrix power).

Parameters ---------- data : array_like or string If `data` is a string, it is interpreted as a matrix with commas or spaces separating columns, and semicolons separating rows. dtype : data-type Data-type of the output matrix. copy : bool If `data` is already an `ndarray`, then this flag determines whether the data is copied (the default), or whether a view is constructed.

See Also -------- array

Examples -------- >>> a = np.matrix('1 2; 3 4') >>> a matrix([1, 2], [3, 4])

>>> np.matrix([1, 2], [3, 4]) matrix([1, 2], [3, 4])

val __getitem__ : index:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Return selfkey.

val __iter__ : [> tag ] Obj.t -> Py.Object.t

Implement iter(self).

val __setitem__ : key:Py.Object.t -> value:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Set selfkey to value.

val all : ?axis:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Test whether all matrix elements along a given axis evaluate to True.

Parameters ---------- See `numpy.all` for complete descriptions

See Also -------- numpy.all

Notes ----- This is the same as `ndarray.all`, but it returns a `matrix` object.

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> y = x0; y matrix([0, 1, 2, 3]) >>> (x == y) matrix([ True, True, True, True], [False, False, False, False], [False, False, False, False]) >>> (x == y).all() False >>> (x == y).all(0) matrix([False, False, False, False]) >>> (x == y).all(1) matrix([ True], [False], [False])

val any : ?axis:int -> ?out:[> `Ndarray ] Np.Obj.t -> [> tag ] Obj.t -> Py.Object.t

Test whether any array element along a given axis evaluates to True.

Refer to `numpy.any` for full documentation.

Parameters ---------- axis : int, optional Axis along which logical OR is performed out : ndarray, optional Output to existing array instead of creating new one, must have same shape as expected output

Returns ------- any : bool, ndarray Returns a single bool if `axis` is ``None``; otherwise, returns `ndarray`

val argmax : ?axis:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Indexes of the maximum values along an axis.

Return the indexes of the first occurrences of the maximum values along the specified axis. If axis is None, the index is for the flattened matrix.

Parameters ---------- See `numpy.argmax` for complete descriptions

See Also -------- numpy.argmax

Notes ----- This is the same as `ndarray.argmax`, but returns a `matrix` object where `ndarray.argmax` would return an `ndarray`.

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> x.argmax() 11 >>> x.argmax(0) matrix([2, 2, 2, 2]) >>> x.argmax(1) matrix([3], [3], [3])

val argmin : ?axis:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Indexes of the minimum values along an axis.

Return the indexes of the first occurrences of the minimum values along the specified axis. If axis is None, the index is for the flattened matrix.

Parameters ---------- See `numpy.argmin` for complete descriptions.

See Also -------- numpy.argmin

Notes ----- This is the same as `ndarray.argmin`, but returns a `matrix` object where `ndarray.argmin` would return an `ndarray`.

Examples -------- >>> x = -np.matrix(np.arange(12).reshape((3,4))); x matrix([ 0, -1, -2, -3], [ -4, -5, -6, -7], [ -8, -9, -10, -11]) >>> x.argmin() 11 >>> x.argmin(0) matrix([2, 2, 2, 2]) >>> x.argmin(1) matrix([3], [3], [3])

val argpartition : ?axis:Py.Object.t -> ?kind:Py.Object.t -> ?order:Py.Object.t -> kth:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.argpartition(kth, axis=-1, kind='introselect', order=None)

Returns the indices that would partition this array.

Refer to `numpy.argpartition` for full documentation.

.. versionadded:: 1.8.0

See Also -------- numpy.argpartition : equivalent function

val argsort : ?axis:Py.Object.t -> ?kind:Py.Object.t -> ?order:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.argsort(axis=-1, kind=None, order=None)

Returns the indices that would sort this array.

Refer to `numpy.argsort` for full documentation.

See Also -------- numpy.argsort : equivalent function

val astype : ?order:[ `C | `F | `A | `K ] -> ?casting:[ `No | `Equiv | `Safe | `Same_kind | `Unsafe ] -> ?subok:Py.Object.t -> ?copy:bool -> dtype:[ `S of string | `Dtype of Np.Dtype.t ] -> [> tag ] Obj.t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

a.astype(dtype, order='K', casting='unsafe', subok=True, copy=True)

Copy of the array, cast to a specified type.

Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. order : 'C', 'F', 'A', 'K', optional Controls the memory layout order of the result. 'C' means C order, 'F' means Fortran order, 'A' means 'F' order if all the arrays are Fortran contiguous, 'C' order otherwise, and 'K' means as close to the order the array elements appear in memory as possible. Default is 'K'. casting : 'no', 'equiv', 'safe', 'same_kind', 'unsafe', optional Controls what kind of data casting may occur. Defaults to 'unsafe' for backwards compatibility.

* 'no' means the data types should not be cast at all. * 'equiv' means only byte-order changes are allowed. * 'safe' means only casts which can preserve values are allowed. * 'same_kind' means only safe casts or casts within a kind, like float64 to float32, are allowed. * 'unsafe' means any data conversions may be done. subok : bool, optional If True, then sub-classes will be passed-through (default), otherwise the returned array will be forced to be a base-class array. copy : bool, optional By default, astype always returns a newly allocated array. If this is set to false, and the `dtype`, `order`, and `subok` requirements are satisfied, the input array is returned instead of a copy.

Returns ------- arr_t : ndarray Unless `copy` is False and the other conditions for returning the input array are satisfied (see description for `copy` input parameter), `arr_t` is a new array of the same shape as the input array, with dtype, order given by `dtype`, `order`.

Notes ----- .. versionchanged:: 1.17.0 Casting between a simple data type and a structured one is possible only for 'unsafe' casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

.. versionchanged:: 1.9.0 Casting from numeric to string types in 'safe' casting mode requires that the string dtype length is long enough to store the max integer/float value converted.

Raises ------ ComplexWarning When casting from complex to float or int. To avoid this, one should use ``a.real.astype(t)``.

Examples -------- >>> x = np.array(1, 2, 2.5) >>> x array(1. , 2. , 2.5)

>>> x.astype(int) array(1, 2, 2)

val byteswap : ?inplace:bool -> [> tag ] Obj.t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

a.byteswap(inplace=False)

Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex number are swapped individually.

Parameters ---------- inplace : bool, optional If ``True``, swap bytes in-place, default is ``False``.

Returns ------- out : ndarray The byteswapped array. If `inplace` is ``True``, this is a view to self.

Examples -------- >>> A = np.array(1, 256, 8755, dtype=np.int16) >>> list(map(hex, A)) '0x1', '0x100', '0x2233' >>> A.byteswap(inplace=True) array( 256, 1, 13090, dtype=int16) >>> list(map(hex, A)) '0x100', '0x1', '0x3322'

Arrays of byte-strings are not swapped

>>> A = np.array(b'ceg', b'fac') >>> A.byteswap() array(b'ceg', b'fac', dtype='|S3')

``A.newbyteorder().byteswap()`` produces an array with the same values but different representation in memory

>>> A = np.array(1, 2, 3) >>> A.view(np.uint8) array(1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, dtype=uint8) >>> A.newbyteorder().byteswap(inplace=True) array(1, 2, 3) >>> A.view(np.uint8) array(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, dtype=uint8)

val choose : ?out:Py.Object.t -> ?mode:Py.Object.t -> choices:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.choose(choices, out=None, mode='raise')

Use an index array to construct a new array from a set of choices.

Refer to `numpy.choose` for full documentation.

See Also -------- numpy.choose : equivalent function

val clip : ?min:Py.Object.t -> ?max:Py.Object.t -> ?out:Py.Object.t -> ?kwargs:(string * Py.Object.t) list -> [> tag ] Obj.t -> Py.Object.t

a.clip(min=None, max=None, out=None, **kwargs)

Return an array whose values are limited to ``min, max``. One of max or min must be given.

Refer to `numpy.clip` for full documentation.

See Also -------- numpy.clip : equivalent function

val compress : ?axis:Py.Object.t -> ?out:Py.Object.t -> condition:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.compress(condition, axis=None, out=None)

Return selected slices of this array along given axis.

Refer to `numpy.compress` for full documentation.

See Also -------- numpy.compress : equivalent function

val conj : [> tag ] Obj.t -> Py.Object.t

a.conj()

Complex-conjugate all elements.

Refer to `numpy.conjugate` for full documentation.

See Also -------- numpy.conjugate : equivalent function

val conjugate : [> tag ] Obj.t -> Py.Object.t

a.conjugate()

Return the complex conjugate, element-wise.

Refer to `numpy.conjugate` for full documentation.

See Also -------- numpy.conjugate : equivalent function

val copy : ?order:[ `C | `F | `A | `K ] -> [> tag ] Obj.t -> Py.Object.t

a.copy(order='C')

Return a copy of the array.

Parameters ---------- order : 'C', 'F', 'A', 'K', optional Controls the memory layout of the copy. 'C' means C-order, 'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous, 'C' otherwise. 'K' means match the layout of `a` as closely as possible. (Note that this function and :func:`numpy.copy` are very similar, but have different default values for their order= arguments.)

See also -------- numpy.copy numpy.copyto

Examples -------- >>> x = np.array([1,2,3],[4,5,6], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x array([0, 0, 0], [0, 0, 0])

>>> y array([1, 2, 3], [4, 5, 6])

>>> y.flags'C_CONTIGUOUS' True

val cumprod : ?axis:Py.Object.t -> ?dtype:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.cumprod(axis=None, dtype=None, out=None)

Return the cumulative product of the elements along the given axis.

Refer to `numpy.cumprod` for full documentation.

See Also -------- numpy.cumprod : equivalent function

val cumsum : ?axis:Py.Object.t -> ?dtype:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.cumsum(axis=None, dtype=None, out=None)

Return the cumulative sum of the elements along the given axis.

Refer to `numpy.cumsum` for full documentation.

See Also -------- numpy.cumsum : equivalent function

val diagonal : ?offset:Py.Object.t -> ?axis1:Py.Object.t -> ?axis2:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.diagonal(offset=0, axis1=0, axis2=1)

Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to :func:`numpy.diagonal` for full documentation.

See Also -------- numpy.diagonal : equivalent function

val dot : ?out:Py.Object.t -> b:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.dot(b, out=None)

Dot product of two arrays.

Refer to `numpy.dot` for full documentation.

See Also -------- numpy.dot : equivalent function

Examples -------- >>> a = np.eye(2) >>> b = np.ones((2, 2)) * 2 >>> a.dot(b) array([2., 2.], [2., 2.])

This array method can be conveniently chained:

>>> a.dot(b).dot(b) array([8., 8.], [8., 8.])

val dump : file:[ `S of string | `Path of Py.Object.t ] -> [> tag ] Obj.t -> Py.Object.t

a.dump(file)

Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters ---------- file : str or Path A string naming the dump file.

.. versionchanged:: 1.17.0 `pathlib.Path` objects are now accepted.

val dumps : [> tag ] Obj.t -> Py.Object.t

a.dumps()

Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an array.

Parameters ---------- None

val fill : value:[ `F of float | `I of int | `Bool of bool | `S of string ] -> [> tag ] Obj.t -> Py.Object.t

a.fill(value)

Fill the array with a scalar value.

Parameters ---------- value : scalar All elements of `a` will be assigned this value.

Examples -------- >>> a = np.array(1, 2) >>> a.fill(0) >>> a array(0, 0) >>> a = np.empty(2) >>> a.fill(1) >>> a array(1., 1.)

val flatten : ?order:[ `C | `F | `A | `K ] -> [> tag ] Obj.t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return a flattened copy of the matrix.

All `N` elements of the matrix are placed into a single row.

Parameters ---------- order : 'C', 'F', 'A', 'K', optional 'C' means to flatten in row-major (C-style) order. 'F' means to flatten in column-major (Fortran-style) order. 'A' means to flatten in column-major order if `m` is Fortran *contiguous* in memory, row-major order otherwise. 'K' means to flatten `m` in the order the elements occur in memory. The default is 'C'.

Returns ------- y : matrix A copy of the matrix, flattened to a `(1, N)` matrix where `N` is the number of elements in the original matrix.

See Also -------- ravel : Return a flattened array. flat : A 1-D flat iterator over the matrix.

Examples -------- >>> m = np.matrix([1,2], [3,4]) >>> m.flatten() matrix([1, 2, 3, 4]) >>> m.flatten('F') matrix([1, 3, 2, 4])

val getA : [> tag ] Obj.t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return `self` as an `ndarray` object.

Equivalent to ``np.asarray(self)``.

Parameters ---------- None

Returns ------- ret : ndarray `self` as an `ndarray`

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> x.getA() array([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11])

val getA1 : [> tag ] Obj.t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return `self` as a flattened `ndarray`.

Equivalent to ``np.asarray(x).ravel()``

Parameters ---------- None

Returns ------- ret : ndarray `self`, 1-D, as an `ndarray`

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> x.getA1() array( 0, 1, 2, ..., 9, 10, 11)

val getH : [> tag ] Obj.t -> Py.Object.t

Returns the (complex) conjugate transpose of `self`.

Equivalent to ``np.transpose(self)`` if `self` is real-valued.

Parameters ---------- None

Returns ------- ret : matrix object complex conjugate transpose of `self`

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3,4))) >>> z = x - 1j*x; z matrix([ 0. +0.j, 1. -1.j, 2. -2.j, 3. -3.j], [ 4. -4.j, 5. -5.j, 6. -6.j, 7. -7.j], [ 8. -8.j, 9. -9.j, 10.-10.j, 11.-11.j]) >>> z.getH() matrix([ 0. -0.j, 4. +4.j, 8. +8.j], [ 1. +1.j, 5. +5.j, 9. +9.j], [ 2. +2.j, 6. +6.j, 10.+10.j], [ 3. +3.j, 7. +7.j, 11.+11.j])

val getI : [> tag ] Obj.t -> Py.Object.t

Returns the (multiplicative) inverse of invertible `self`.

Parameters ---------- None

Returns ------- ret : matrix object If `self` is non-singular, `ret` is such that ``ret * self`` == ``self * ret`` == ``np.matrix(np.eye(self0,:.size))`` all return ``True``.

Raises ------ numpy.linalg.LinAlgError: Singular matrix If `self` is singular.

See Also -------- linalg.inv

Examples -------- >>> m = np.matrix('1, 2; 3, 4'); m matrix([1, 2], [3, 4]) >>> m.getI() matrix([-2. , 1. ], [ 1.5, -0.5]) >>> m.getI() * m matrix([ 1., 0.], # may vary [ 0., 1.])

val getT : [> tag ] Obj.t -> Py.Object.t

Returns the transpose of the matrix.

Does *not* conjugate! For the complex conjugate transpose, use ``.H``.

Parameters ---------- None

Returns ------- ret : matrix object The (non-conjugated) transpose of the matrix.

See Also -------- transpose, getH

Examples -------- >>> m = np.matrix('1, 2; 3, 4') >>> m matrix([1, 2], [3, 4]) >>> m.getT() matrix([1, 3], [2, 4])

val getfield : ?offset:int -> dtype:[ `S of string | `Dtype of Np.Dtype.t ] -> [> tag ] Obj.t -> Py.Object.t

a.getfield(dtype, offset=0)

Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters ---------- dtype : str or dtype The data type of the view. The dtype size of the view can not be larger than that of the array itself. offset : int Number of bytes to skip before beginning the element view.

Examples -------- >>> x = np.diag(1.+1.j*2) >>> x1, 1 = 2 + 4.j >>> x array([1.+1.j, 0.+0.j], [0.+0.j, 2.+4.j]) >>> x.getfield(np.float64) array([1., 0.], [0., 2.])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8) array([1., 0.], [0., 4.])

val item : Py.Object.t list -> [> tag ] Obj.t -> Py.Object.t

a.item( *args)

Copy an element of an array to a standard Python scalar and return it.

Parameters ---------- \*args : Arguments (variable number and type)

* none: in this case, the method only works for arrays with one element (`a.size == 1`), which element is copied into a standard Python scalar object and returned.

* int_type: this argument is interpreted as a flat index into the array, specifying which element to copy and return.

* tuple of int_types: functions as does a single int_type argument, except that the argument is interpreted as an nd-index into the array.

Returns ------- z : Standard Python scalar object A copy of the specified element of the array as a suitable Python scalar

Notes ----- When the data type of `a` is longdouble or clongdouble, item() returns a scalar array object because there is no available Python scalar that would not lose information. Void arrays return a buffer object for item(), unless fields are defined, in which case a tuple is returned.

`item` is very similar to aargs, except, instead of an array scalar, a standard Python scalar is returned. This can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array using Python's optimized math.

Examples -------- >>> np.random.seed(123) >>> x = np.random.randint(9, size=(3, 3)) >>> x array([2, 2, 6], [1, 3, 6], [1, 0, 1]) >>> x.item(3) 1 >>> x.item(7) 0 >>> x.item((0, 1)) 2 >>> x.item((2, 2)) 1

val itemset : Py.Object.t list -> [> tag ] Obj.t -> Py.Object.t

a.itemset( *args)

Insert scalar into an array (scalar is cast to array's dtype, if possible)

There must be at least 1 argument, and define the last argument as *item*. Then, ``a.itemset( *args)`` is equivalent to but faster than ``aargs = item``. The item should be a scalar value and `args` must select a single item in the array `a`.

Parameters ---------- \*args : Arguments If one argument: a scalar, only used in case `a` is of size 1. If two arguments: the last argument is the value to be set and must be a scalar, the first argument specifies a single array element location. It is either an int or a tuple.

Notes ----- Compared to indexing syntax, `itemset` provides some speed increase for placing a scalar into a particular location in an `ndarray`, if you must do this. However, generally this is discouraged: among other problems, it complicates the appearance of the code. Also, when using `itemset` (and `item`) inside a loop, be sure to assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples -------- >>> np.random.seed(123) >>> x = np.random.randint(9, size=(3, 3)) >>> x array([2, 2, 6], [1, 3, 6], [1, 0, 1]) >>> x.itemset(4, 0) >>> x.itemset((2, 2), 9) >>> x array([2, 2, 6], [1, 0, 6], [1, 0, 9])

val max : ?axis:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Return the maximum value along an axis.

Parameters ---------- See `amax` for complete descriptions

See Also -------- amax, ndarray.max

Notes ----- This is the same as `ndarray.max`, but returns a `matrix` object where `ndarray.max` would return an ndarray.

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> x.max() 11 >>> x.max(0) matrix([ 8, 9, 10, 11]) >>> x.max(1) matrix([ 3], [ 7], [11])

val mean : ?axis:Py.Object.t -> ?dtype:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Returns the average of the matrix elements along the given axis.

Refer to `numpy.mean` for full documentation.

See Also -------- numpy.mean

Notes ----- Same as `ndarray.mean` except that, where that returns an `ndarray`, this returns a `matrix` object.

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3, 4))) >>> x matrix([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> x.mean() 5.5 >>> x.mean(0) matrix([4., 5., 6., 7.]) >>> x.mean(1) matrix([ 1.5], [ 5.5], [ 9.5])

val min : ?axis:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Return the minimum value along an axis.

Parameters ---------- See `amin` for complete descriptions.

See Also -------- amin, ndarray.min

Notes ----- This is the same as `ndarray.min`, but returns a `matrix` object where `ndarray.min` would return an ndarray.

Examples -------- >>> x = -np.matrix(np.arange(12).reshape((3,4))); x matrix([ 0, -1, -2, -3], [ -4, -5, -6, -7], [ -8, -9, -10, -11]) >>> x.min() -11 >>> x.min(0) matrix([ -8, -9, -10, -11]) >>> x.min(1) matrix([ -3], [ -7], [-11])

val newbyteorder : ?new_order:string -> [> tag ] Obj.t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

arr.newbyteorder(new_order='S')

Return the array with the same data viewed with a different byte order.

Equivalent to::

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters ---------- new_order : string, optional Byte order to force; a value from the byte order specifications below. `new_order` codes can be any of:

* 'S' - swap dtype from current to opposite endian * '<', 'L' - little endian * '>', 'B' - big endian * '=', 'N' - native order * '|', 'I' - ignore (no change to byte order)

The default value ('S') results in swapping the current byte order. The code does a case-insensitive check on the first letter of `new_order` for the alternatives above. For example, any of 'B' or 'b' or 'biggish' are valid to specify big-endian.

Returns ------- new_arr : array New array object with the dtype reflecting given change to the byte order.

val nonzero : [> tag ] Obj.t -> Py.Object.t

a.nonzero()

Return the indices of the elements that are non-zero.

Refer to `numpy.nonzero` for full documentation.

See Also -------- numpy.nonzero : equivalent function

val partition : ?axis:int -> ?kind:[ `Introselect ] -> ?order:[ `S of string | `StringList of string list ] -> kth:[ `I of int | `Is of int list ] -> [> tag ] Obj.t -> Py.Object.t

a.partition(kth, axis=-1, kind='introselect', order=None)

Rearranges the elements in the array in such a way that the value of the element in kth position is in the position it would be in a sorted array. All elements smaller than the kth element are moved before this element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is undefined.

.. versionadded:: 1.8.0

Parameters ---------- kth : int or sequence of ints Element index to partition by. The kth element value will be in its final sorted position and all smaller elements will be moved before it and all equal or greater elements behind it. The order of all elements in the partitions is undefined. If provided with a sequence of kth it will partition all elements indexed by kth of them into their sorted position at once. axis : int, optional Axis along which to sort. Default is -1, which means sort along the last axis. kind : 'introselect', optional Selection algorithm. Default is 'introselect'. order : str or list of str, optional When `a` is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need to be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

See Also -------- numpy.partition : Return a parititioned copy of an array. argpartition : Indirect partition. sort : Full sort.

Notes ----- See ``np.partition`` for notes on the different algorithms.

Examples -------- >>> a = np.array(3, 4, 2, 1) >>> a.partition(3) >>> a array(2, 1, 3, 4)

>>> a.partition((1, 3)) >>> a array(1, 2, 3, 4)

val prod : ?axis:Py.Object.t -> ?dtype:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Return the product of the array elements over the given axis.

Refer to `prod` for full documentation.

See Also -------- prod, ndarray.prod

Notes ----- Same as `ndarray.prod`, except, where that returns an `ndarray`, this returns a `matrix` object instead.

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> x.prod() 0 >>> x.prod(0) matrix([ 0, 45, 120, 231]) >>> x.prod(1) matrix([ 0], [ 840], [7920])

val ptp : ?axis:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Peak-to-peak (maximum - minimum) value along the given axis.

Refer to `numpy.ptp` for full documentation.

See Also -------- numpy.ptp

Notes ----- Same as `ndarray.ptp`, except, where that would return an `ndarray` object, this returns a `matrix` object.

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> x.ptp() 11 >>> x.ptp(0) matrix([8, 8, 8, 8]) >>> x.ptp(1) matrix([3], [3], [3])

val put : ?mode:Py.Object.t -> indices:Py.Object.t -> values:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.put(indices, values, mode='raise')

Set ``a.flatn = valuesn`` for all `n` in indices.

Refer to `numpy.put` for full documentation.

See Also -------- numpy.put : equivalent function

val ravel : ?order:[ `C | `F | `A | `K ] -> [> tag ] Obj.t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return a flattened matrix.

Refer to `numpy.ravel` for more documentation.

Parameters ---------- order : 'C', 'F', 'A', 'K', optional The elements of `m` are read using this index order. 'C' means to index the elements in C-like order, with the last axis index changing fastest, back to the first axis index changing slowest. 'F' means to index the elements in Fortran-like index order, with the first index changing fastest, and the last index changing slowest. Note that the 'C' and 'F' options take no account of the memory layout of the underlying array, and only refer to the order of axis indexing. 'A' means to read the elements in Fortran-like index order if `m` is Fortran *contiguous* in memory, C-like order otherwise. 'K' means to read the elements in the order they occur in memory, except for reversing the data when strides are negative. By default, 'C' index order is used.

Returns ------- ret : matrix Return the matrix flattened to shape `(1, N)` where `N` is the number of elements in the original matrix. A copy is made only if necessary.

See Also -------- matrix.flatten : returns a similar output matrix but always a copy matrix.flat : a flat iterator on the array. numpy.ravel : related function which returns an ndarray

val repeat : ?axis:Py.Object.t -> repeats:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.repeat(repeats, axis=None)

Repeat elements of an array.

Refer to `numpy.repeat` for full documentation.

See Also -------- numpy.repeat : equivalent function

val reshape : ?order:Py.Object.t -> shape:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.reshape(shape, order='C')

Returns an array containing the same data with a new shape.

Refer to `numpy.reshape` for full documentation.

See Also -------- numpy.reshape : equivalent function

Notes ----- Unlike the free function `numpy.reshape`, this method on `ndarray` allows the elements of the shape parameter to be passed in as separate arguments. For example, ``a.reshape(10, 11)`` is equivalent to ``a.reshape((10, 11))``.

val resize : ?refcheck:bool -> new_shape:[ `T_n_ints of Py.Object.t | `TupleOfInts of int list ] -> [> tag ] Obj.t -> Py.Object.t

a.resize(new_shape, refcheck=True)

Change shape and size of array in-place.

Parameters ---------- new_shape : tuple of ints, or `n` ints Shape of resized array. refcheck : bool, optional If False, reference count will not be checked. Default is True.

Returns ------- None

Raises ------ ValueError If `a` does not own its own data or references or views to it exist, and the data memory must be changed. PyPy only: will always raise if the data memory must be changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the `order` keyword argument is specified. This behaviour is a bug in NumPy.

See Also -------- resize : Return a new array with the specified shape.

Notes ----- This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another Python object and then reallocate the memory. However, reference counts can increase in other ways so if you are sure that you have not shared the memory for this array with another Python object, then you may safely set `refcheck` to False.

Examples -------- Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array([0, 1], [2, 3], order='C') >>> a.resize((2, 1)) >>> a array([0], [1])

>>> a = np.array([0, 1], [2, 3], order='F') >>> a.resize((2, 1)) >>> a array([0], [2])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([0, 1], [2, 3]) >>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple >>> b array([0, 1, 2], [3, 0, 0])

Referencing an array prevents resizing...

>>> c = a >>> a.resize((1, 1)) Traceback (most recent call last): ... ValueError: cannot resize an array that references or is referenced ...

Unless `refcheck` is False:

>>> a.resize((1, 1), refcheck=False) >>> a array([0]) >>> c array([0])

val round : ?decimals:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.round(decimals=0, out=None)

Return `a` with each element rounded to the given number of decimals.

Refer to `numpy.around` for full documentation.

See Also -------- numpy.around : equivalent function

val searchsorted : ?side:Py.Object.t -> ?sorter:Py.Object.t -> v:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.searchsorted(v, side='left', sorter=None)

Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see `numpy.searchsorted`

See Also -------- numpy.searchsorted : equivalent function

val setfield : ?offset:int -> val_:Py.Object.t -> dtype:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.setfield(val, dtype, offset=0)

Put a value into a specified place in a field defined by a data-type.

Place `val` into `a`'s field defined by `dtype` and beginning `offset` bytes into the field.

Parameters ---------- val : object Value to be placed in field. dtype : dtype object Data-type of the field in which to place `val`. offset : int, optional The number of bytes into the field at which to place `val`.

Returns ------- None

See Also -------- getfield

Examples -------- >>> x = np.eye(3) >>> x.getfield(np.float64) array([1., 0., 0.], [0., 1., 0.], [0., 0., 1.]) >>> x.setfield(3, np.int32) >>> x.getfield(np.int32) array([3, 3, 3], [3, 3, 3], [3, 3, 3], dtype=int32) >>> x array([1.0e+000, 1.5e-323, 1.5e-323], [1.5e-323, 1.0e+000, 1.5e-323], [1.5e-323, 1.5e-323, 1.0e+000]) >>> x.setfield(np.eye(3), np.int32) >>> x array([1., 0., 0.], [0., 1., 0.], [0., 0., 1.])

val setflags : ?write:bool -> ?align:bool -> ?uic:bool -> [> tag ] Obj.t -> Py.Object.t

a.setflags(write=None, align=None, uic=None)

Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by `a` (see Notes below). The ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITEBACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done without copying memory.)

Parameters ---------- write : bool, optional Describes whether or not `a` can be written to. align : bool, optional Describes whether or not `a` is aligned properly for its type. uic : bool, optional Describes whether or not `a` is a copy of another 'base' array.

Notes ----- Array flags provide information about how the memory area used for the array is to be interpreted. There are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the compiler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples -------- >>> y = np.array([3, 1, 7], ... [2, 0, 0], ... [8, 5, 9]) >>> y array([3, 1, 7], [2, 0, 0], [8, 5, 9]) >>> y.flags C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : True WRITEABLE : True ALIGNED : True WRITEBACKIFCOPY : False UPDATEIFCOPY : False >>> y.setflags(write=0, align=0) >>> y.flags C_CONTIGUOUS : True F_CONTIGUOUS : False OWNDATA : True WRITEABLE : False ALIGNED : False WRITEBACKIFCOPY : False UPDATEIFCOPY : False >>> y.setflags(uic=1) Traceback (most recent call last): File '<stdin>', line 1, in <module> ValueError: cannot set WRITEBACKIFCOPY flag to True

val sort : ?axis:int -> ?kind:[ `Quicksort | `Heapsort | `Stable | `Mergesort ] -> ?order:[ `S of string | `StringList of string list ] -> [> tag ] Obj.t -> Py.Object.t

a.sort(axis=-1, kind=None, order=None)

Sort an array in-place. Refer to `numpy.sort` for full documentation.

Parameters ---------- axis : int, optional Axis along which to sort. Default is -1, which means sort along the last axis. kind : 'quicksort', 'mergesort', 'heapsort', 'stable', optional Sorting algorithm. The default is 'quicksort'. Note that both 'stable' and 'mergesort' use timsort under the covers and, in general, the actual implementation will vary with datatype. The 'mergesort' option is retained for backwards compatibility.

.. versionchanged:: 1.15.0. The 'stable' option was added.

order : str or list of str, optional When `a` is an array with fields defined, this argument specifies which fields to compare first, second, etc. A single field can be specified as a string, and not all fields need be specified, but unspecified fields will still be used, in the order in which they come up in the dtype, to break ties.

See Also -------- numpy.sort : Return a sorted copy of an array. numpy.argsort : Indirect sort. numpy.lexsort : Indirect stable sort on multiple keys. numpy.searchsorted : Find elements in sorted array. numpy.partition: Partial sort.

Notes ----- See `numpy.sort` for notes on the different sorting algorithms.

Examples -------- >>> a = np.array([1,4], [3,1]) >>> a.sort(axis=1) >>> a array([1, 4], [1, 3]) >>> a.sort(axis=0) >>> a array([1, 3], [1, 4])

Use the `order` keyword to specify a field to use when sorting a structured array:

>>> a = np.array(('a', 2), ('c', 1), dtype=('x', 'S1'), ('y', int)) >>> a.sort(order='y') >>> a array((b'c', 1), (b'a', 2), dtype=('x', 'S1'), ('y', '<i8'))

val squeeze : ?axis:int list -> [> tag ] Obj.t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

Return a possibly reshaped matrix.

Refer to `numpy.squeeze` for more documentation.

Parameters ---------- axis : None or int or tuple of ints, optional Selects a subset of the single-dimensional entries in the shape. If an axis is selected with shape entry greater than one, an error is raised.

Returns ------- squeezed : matrix The matrix, but as a (1, N) matrix if it had shape (N, 1).

See Also -------- numpy.squeeze : related function

Notes ----- If `m` has a single column then that column is returned as the single row of a matrix. Otherwise `m` is returned. The returned matrix is always either `m` itself or a view into `m`. Supplying an axis keyword argument will not affect the returned matrix but it may cause an error to be raised.

Examples -------- >>> c = np.matrix([1], [2]) >>> c matrix([1], [2]) >>> c.squeeze() matrix([1, 2]) >>> r = c.T >>> r matrix([1, 2]) >>> r.squeeze() matrix([1, 2]) >>> m = np.matrix([1, 2], [3, 4]) >>> m.squeeze() matrix([1, 2], [3, 4])

val std : ?axis:Py.Object.t -> ?dtype:Py.Object.t -> ?out:Py.Object.t -> ?ddof:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Return the standard deviation of the array elements along the given axis.

Refer to `numpy.std` for full documentation.

See Also -------- numpy.std

Notes ----- This is the same as `ndarray.std`, except that where an `ndarray` would be returned, a `matrix` object is returned instead.

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3, 4))) >>> x matrix([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> x.std() 3.4520525295346629 # may vary >>> x.std(0) matrix([ 3.26598632, 3.26598632, 3.26598632, 3.26598632]) # may vary >>> x.std(1) matrix([ 1.11803399], [ 1.11803399], [ 1.11803399])

val sum : ?axis:Py.Object.t -> ?dtype:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Returns the sum of the matrix elements, along the given axis.

Refer to `numpy.sum` for full documentation.

See Also -------- numpy.sum

Notes ----- This is the same as `ndarray.sum`, except that where an `ndarray` would be returned, a `matrix` object is returned instead.

Examples -------- >>> x = np.matrix([1, 2], [4, 3]) >>> x.sum() 10 >>> x.sum(axis=1) matrix([3], [7]) >>> x.sum(axis=1, dtype='float') matrix([3.], [7.]) >>> out = np.zeros((2, 1), dtype='float') >>> x.sum(axis=1, dtype='float', out=np.asmatrix(out)) matrix([3.], [7.])

val swapaxes : axis1:Py.Object.t -> axis2:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.swapaxes(axis1, axis2)

Return a view of the array with `axis1` and `axis2` interchanged.

Refer to `numpy.swapaxes` for full documentation.

See Also -------- numpy.swapaxes : equivalent function

val take : ?axis:Py.Object.t -> ?out:Py.Object.t -> ?mode:Py.Object.t -> indices:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.take(indices, axis=None, out=None, mode='raise')

Return an array formed from the elements of `a` at the given indices.

Refer to `numpy.take` for full documentation.

See Also -------- numpy.take : equivalent function

val tobytes : ?order:[ `C | `F | `None ] -> [> tag ] Obj.t -> Py.Object.t

a.tobytes(order='C')

Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object can be produced in either 'C' or 'Fortran', or 'Any' order (the default is 'C'-order). 'Any' order means C-order unless the F_CONTIGUOUS flag in the array is set, in which case it means 'Fortran' order.

.. versionadded:: 1.9.0

Parameters ---------- order : 'C', 'F', None, optional Order of the data for multidimensional arrays: C, Fortran, or the same as for the original array.

Returns ------- s : bytes Python bytes exhibiting a copy of `a`'s raw data.

Examples -------- >>> x = np.array([0, 1], [2, 3], dtype='<u2') >>> x.tobytes() b'\x00\x00\x01\x00\x02\x00\x03\x00' >>> x.tobytes('C') == x.tobytes() True >>> x.tobytes('F') b'\x00\x00\x02\x00\x01\x00\x03\x00'

val tofile : ?sep:string -> ?format:string -> fid:[ `S of string | `PyObject of Py.Object.t ] -> [> tag ] Obj.t -> Py.Object.t

a.tofile(fid, sep='', format='%s')

Write array to a file as text or binary (default).

Data is always written in 'C' order, independent of the order of `a`. The data produced by this method can be recovered using the function fromfile().

Parameters ---------- fid : file or str or Path An open file object, or a string containing a filename.

.. versionchanged:: 1.17.0 `pathlib.Path` objects are now accepted.

sep : str Separator between array items for text output. If '' (empty), a binary file is written, equivalent to ``file.write(a.tobytes())``. format : str Format string for text file output. Each entry in the array is formatted to text by first converting it to the closest Python type, and then using 'format' % item.

Notes ----- This is a convenience function for quick storage of array data. Information on endianness and precision is lost, so this method is not a good choice for files intended to archive data or transport data between machines with different endianness. Some of these problems can be overcome by outputting the data as text files, at the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object's ``write`` method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or file-like objects that do not support ``fileno()`` (e.g., BytesIO).

val tolist : [> tag ] Obj.t -> Py.Object.t

Return the matrix as a (possibly nested) list.

See `ndarray.tolist` for full documentation.

See Also -------- ndarray.tolist

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3,4))); x matrix([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> x.tolist() [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]

val tostring : ?order:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.tostring(order='C')

A compatibility alias for `tobytes`, with exactly the same behavior.

Despite its name, it returns `bytes` not `str`\ s.

.. deprecated:: 1.19.0

val trace : ?offset:Py.Object.t -> ?axis1:Py.Object.t -> ?axis2:Py.Object.t -> ?dtype:Py.Object.t -> ?out:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)

Return the sum along diagonals of the array.

Refer to `numpy.trace` for full documentation.

See Also -------- numpy.trace : equivalent function

val transpose : Py.Object.t list -> [> tag ] Obj.t -> [ `ArrayLike | `Ndarray | `Object ] Np.Obj.t

a.transpose( *axes)

Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array into a 2D column vector, an additional dimension must be added. `np.atleast2d(a).T` achieves this, as does `a:, np.newaxis`. For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given, their order indicates how the axes are permuted (see Examples). If axes are not provided and ``a.shape = (i0, i1, ... in-2, in-1)``, then ``a.transpose().shape = (in-1, in-2, ... i1, i0)``.

Parameters ---------- axes : None, tuple of ints, or `n` ints

* None or no argument: reverses the order of the axes.

* tuple of ints: `i` in the `j`-th place in the tuple means `a`'s `i`-th axis becomes `a.transpose()`'s `j`-th axis.

* `n` ints: same as an n-tuple of the same ints (this form is intended simply as a 'convenience' alternative to the tuple form)

Returns ------- out : ndarray View of `a`, with axes suitably permuted.

See Also -------- ndarray.T : Array property returning the array transposed. ndarray.reshape : Give a new shape to an array without changing its data.

Examples -------- >>> a = np.array([1, 2], [3, 4]) >>> a array([1, 2], [3, 4]) >>> a.transpose() array([1, 3], [2, 4]) >>> a.transpose((1, 0)) array([1, 3], [2, 4]) >>> a.transpose(1, 0) array([1, 3], [2, 4])

val var : ?axis:Py.Object.t -> ?dtype:Py.Object.t -> ?out:Py.Object.t -> ?ddof:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

Returns the variance of the matrix elements, along the given axis.

Refer to `numpy.var` for full documentation.

See Also -------- numpy.var

Notes ----- This is the same as `ndarray.var`, except that where an `ndarray` would be returned, a `matrix` object is returned instead.

Examples -------- >>> x = np.matrix(np.arange(12).reshape((3, 4))) >>> x matrix([ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]) >>> x.var() 11.916666666666666 >>> x.var(0) matrix([ 10.66666667, 10.66666667, 10.66666667, 10.66666667]) # may vary >>> x.var(1) matrix([1.25], [1.25], [1.25])

val view : ?dtype:[ `Ndarray_sub_class of Py.Object.t | `Dtype of Np.Dtype.t ] -> ?type_:Py.Object.t -> [> tag ] Obj.t -> Py.Object.t

a.view(dtype, type)

New view of array with the same data.

.. note:: Passing None for ``dtype`` is different from omitting the parameter, since the former invokes ``dtype(None)`` which is an alias for ``dtype('float_')``.

Parameters ---------- dtype : data-type or ndarray sub-class, optional Data-type descriptor of the returned view, e.g., float32 or int16. Omitting it results in the view having the same data-type as `a`. This argument can also be specified as an ndarray sub-class, which then specifies the type of the returned object (this is equivalent to setting the ``type`` parameter). type : Python type, optional Type of the returned view, e.g., ndarray or matrix. Again, omission of the parameter results in type preservation.

Notes ----- ``a.view()`` is used two different ways:

``a.view(some_dtype)`` or ``a.view(dtype=some_dtype)`` constructs a view of the array's memory with a different data-type. This can cause a reinterpretation of the bytes of memory.

``a.view(ndarray_subclass)`` or ``a.view(type=ndarray_subclass)`` just returns an instance of `ndarray_subclass` that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation of the memory.

For ``a.view(some_dtype)``, if ``some_dtype`` has a different number of bytes per entry than the previous dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot be predicted just from the superficial appearance of ``a`` (shown by ``print(a)``). It also depends on exactly how ``a`` is stored in memory. Therefore if ``a`` is C-ordered versus fortran-ordered, versus defined as a slice or transpose, etc., the view may give different results.

Examples -------- >>> x = np.array((1, 2), dtype=('a', np.int8), ('b', np.int8))

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix) >>> y matrix([513], dtype=int16) >>> print(type(y)) <class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array((1, 2),(3,4), dtype=('a', np.int8), ('b', np.int8)) >>> xv = x.view(dtype=np.int8).reshape(-1,2) >>> xv array([1, 2], [3, 4], dtype=int8) >>> xv.mean(0) array(2., 3.)

Making changes to the view changes the underlying array

>>> xv0,1 = 20 >>> x array((1, 20), (3, 4), dtype=('a', 'i1'), ('b', 'i1'))

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray) >>> z.a array(1, 3, dtype=int8)

Views share data:

>>> x0 = (9, 10) >>> z0 (9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices, transposes, fortran-ordering, etc.:

>>> x = np.array([1,2,3],[4,5,6], dtype=np.int16) >>> y = x:, 0:2 >>> y array([1, 2], [4, 5], dtype=int16) >>> y.view(dtype=('width', np.int16), ('length', np.int16)) Traceback (most recent call last): ... ValueError: To change to a dtype of a different size, the array must be C-contiguous >>> z = y.copy() >>> z.view(dtype=('width', np.int16), ('length', np.int16)) array([(1, 2)], [(4, 5)], dtype=('width', '<i2'), ('length', '<i2'))

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.