package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `KNeighborsClassifier
]
type t = [ `BaseEstimator | `ClassifierMixin | `KNeighborsClassifier | `KNeighborsMixin | `MultiOutputMixin | `NeighborsBase | `Object | `SupervisedIntegerMixin ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val as_classifier : t -> [ `ClassifierMixin ] Obj.t
val as_neighbors : t -> [ `NeighborsBase ] Obj.t
val as_multi_output : t -> [ `MultiOutputMixin ] Obj.t
val as_k_neighbors : t -> [ `KNeighborsMixin ] Obj.t
val as_estimator : t -> [ `BaseEstimator ] Obj.t
val as_supervised_integer : t -> [ `SupervisedIntegerMixin ] Obj.t
val create : ?n_neighbors:int -> ?weights:[ `Callable of Py.Object.t | `S of string ] -> ?algorithm:[ `Auto | `Ball_tree | `Kd_tree | `Brute ] -> ?leaf_size:int -> ?p:int -> ?metric:[ `Callable of Py.Object.t | `S of string ] -> ?metric_params:Dict.t -> ?n_jobs:int -> ?kwargs:(string * Py.Object.t) list -> unit -> t

Classifier implementing the k-nearest neighbors vote.

Read more in the :ref:`User Guide <classification>`.

Parameters ---------- n_neighbors : int, optional (default = 5) Number of neighbors to use by default for :meth:`kneighbors` queries.

weights : str or callable, optional (default = 'uniform') weight function used in prediction. Possible values:

  • 'uniform' : uniform weights. All points in each neighborhood are weighted equally.
  • 'distance' : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away.
  • callable : a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights.

algorithm : 'auto', 'ball_tree', 'kd_tree', 'brute', optional Algorithm used to compute the nearest neighbors:

  • 'ball_tree' will use :class:`BallTree`
  • 'kd_tree' will use :class:`KDTree`
  • 'brute' will use a brute-force search.
  • 'auto' will attempt to decide the most appropriate algorithm based on the values passed to :meth:`fit` method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

leaf_size : int, optional (default = 30) Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem.

p : integer, optional (default = 2) Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

metric : string or callable, default 'minkowski' the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics. If metric is 'precomputed', X is assumed to be a distance matrix and must be square during fit. X may be a :term:`Glossary <sparse graph>`, in which case only 'nonzero' elements may be considered neighbors.

metric_params : dict, optional (default = None) Additional keyword arguments for the metric function.

n_jobs : int or None, optional (default=None) The number of parallel jobs to run for neighbors search. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. Doesn't affect :meth:`fit` method.

Attributes ---------- classes_ : array of shape (n_classes,) Class labels known to the classifier

effective_metric_ : string or callble The distance metric used. It will be same as the `metric` parameter or a synonym of it, e.g. 'euclidean' if the `metric` parameter set to 'minkowski' and `p` parameter set to 2.

effective_metric_params_ : dict Additional keyword arguments for the metric function. For most metrics will be same with `metric_params` parameter, but may also contain the `p` parameter value if the `effective_metric_` attribute is set to 'minkowski'.

outputs_2d_ : bool False when `y`'s shape is (n_samples, ) or (n_samples, 1) during fit otherwise True.

Examples -------- >>> X = [0], [1], [2], [3] >>> y = 0, 0, 1, 1 >>> from sklearn.neighbors import KNeighborsClassifier >>> neigh = KNeighborsClassifier(n_neighbors=3) >>> neigh.fit(X, y) KNeighborsClassifier(...) >>> print(neigh.predict([1.1])) 0 >>> print(neigh.predict_proba([0.9])) [0.66666667 0.33333333]

See also -------- RadiusNeighborsClassifier KNeighborsRegressor RadiusNeighborsRegressor NearestNeighbors

Notes ----- See :ref:`Nearest Neighbors <neighbors>` in the online documentation for a discussion of the choice of ``algorithm`` and ``leaf_size``.

.. warning::

Regarding the Nearest Neighbors algorithms, if it is found that two neighbors, neighbor `k+1` and `k`, have identical distances but different labels, the results will depend on the ordering of the training data.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

val fit : x:[ `Arr of [> `ArrayLike ] Np.Obj.t | `PyObject of Py.Object.t ] -> y:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> t

Fit the model using X as training data and y as target values

Parameters ---------- X : array-like, sparse matrix, BallTree, KDTree Training data. If array or matrix, shape n_samples, n_features, or n_samples, n_samples if metric='precomputed'.

y : array-like, sparse matrix Target values of shape = n_samples or n_samples, n_outputs

val get_params : ?deep:bool -> [> tag ] Obj.t -> Dict.t

Get parameters for this estimator.

Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns ------- params : mapping of string to any Parameter names mapped to their values.

val kneighbors : ?x:[> `ArrayLike ] Np.Obj.t -> ?n_neighbors:int -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t * [> `ArrayLike ] Np.Obj.t

Finds the K-neighbors of a point. Returns indices of and distances to the neighbors of each point.

Parameters ---------- X : array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed' The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor.

n_neighbors : int Number of neighbors to get (default is the value passed to the constructor).

return_distance : boolean, optional. Defaults to True. If False, distances will not be returned

Returns ------- neigh_dist : array, shape (n_queries, n_neighbors) Array representing the lengths to points, only present if return_distance=True

neigh_ind : array, shape (n_queries, n_neighbors) Indices of the nearest points in the population matrix.

Examples -------- In the following example, we construct a NearestNeighbors class from an array representing our data set and ask who's the closest point to 1,1,1

>>> samples = [0., 0., 0.], [0., .5, 0.], [1., 1., .5] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=1) >>> neigh.fit(samples) NearestNeighbors(n_neighbors=1) >>> print(neigh.kneighbors([1., 1., 1.])) (array([0.5]), array([2]))

As you can see, it returns [0.5], and [2], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [0., 1., 0.], [1., 0., 1.] >>> neigh.kneighbors(X, return_distance=False) array([1], [2]...)

val kneighbors_graph : ?x:[> `ArrayLike ] Np.Obj.t -> ?n_neighbors:int -> ?mode:[ `Connectivity | `Distance ] -> [> tag ] Obj.t -> [ `ArrayLike | `Csr_matrix | `IndexMixin | `Object ] Np.Obj.t

Computes the (weighted) graph of k-Neighbors for points in X

Parameters ---------- X : array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed' The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor.

n_neighbors : int Number of neighbors for each sample. (default is value passed to the constructor).

mode : 'connectivity', 'distance', optional Type of returned matrix: 'connectivity' will return the connectivity matrix with ones and zeros, in 'distance' the edges are Euclidean distance between points.

Returns ------- A : sparse graph in CSR format, shape = n_queries, n_samples_fit n_samples_fit is the number of samples in the fitted data Ai, j is assigned the weight of edge that connects i to j.

Examples -------- >>> X = [0], [3], [1] >>> from sklearn.neighbors import NearestNeighbors >>> neigh = NearestNeighbors(n_neighbors=2) >>> neigh.fit(X) NearestNeighbors(n_neighbors=2) >>> A = neigh.kneighbors_graph(X) >>> A.toarray() array([1., 0., 1.], [0., 1., 1.], [1., 0., 1.])

See also -------- NearestNeighbors.radius_neighbors_graph

val predict : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Predict the class labels for the provided data.

Parameters ---------- X : array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed' Test samples.

Returns ------- y : array of shape n_queries or n_queries, n_outputs Class labels for each data sample.

val predict_proba : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Return probability estimates for the test data X.

Parameters ---------- X : array-like, shape (n_queries, n_features), or (n_queries, n_indexed) if metric == 'precomputed' Test samples.

Returns ------- p : array of shape = n_queries, n_classes, or a list of n_outputs of such arrays if n_outputs > 1. The class probabilities of the input samples. Classes are ordered by lexicographic order.

val score : ?sample_weight:[> `ArrayLike ] Np.Obj.t -> x:[> `ArrayLike ] Np.Obj.t -> y:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> float

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters ---------- X : array-like of shape (n_samples, n_features) Test samples.

y : array-like of shape (n_samples,) or (n_samples, n_outputs) True labels for X.

sample_weight : array-like of shape (n_samples,), default=None Sample weights.

Returns ------- score : float Mean accuracy of self.predict(X) wrt. y.

val set_params : ?params:(string * Py.Object.t) list -> [> tag ] Obj.t -> t

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object.

Parameters ---------- **params : dict Estimator parameters.

Returns ------- self : object Estimator instance.

val classes_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute classes_: get value or raise Not_found if None.

val classes_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute classes_: get value as an option.

val effective_metric_ : t -> Py.Object.t

Attribute effective_metric_: get value or raise Not_found if None.

val effective_metric_opt : t -> Py.Object.t option

Attribute effective_metric_: get value as an option.

val effective_metric_params_ : t -> Dict.t

Attribute effective_metric_params_: get value or raise Not_found if None.

val effective_metric_params_opt : t -> Dict.t option

Attribute effective_metric_params_: get value as an option.

val outputs_2d_ : t -> bool

Attribute outputs_2d_: get value or raise Not_found if None.

val outputs_2d_opt : t -> bool option

Attribute outputs_2d_: get value as an option.

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.