package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `GraphicalLasso
]
type t = [ `BaseEstimator | `GraphicalLasso | `Object ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val as_estimator : t -> [ `BaseEstimator ] Obj.t
val create : ?alpha:float -> ?mode:[ `Cd | `Lars ] -> ?tol:float -> ?enet_tol:float -> ?max_iter:int -> ?verbose:int -> ?assume_centered:bool -> unit -> t

Sparse inverse covariance estimation with an l1-penalized estimator.

Read more in the :ref:`User Guide <sparse_inverse_covariance>`.

Parameters ---------- alpha : positive float, default 0.01 The regularization parameter: the higher alpha, the more regularization, the sparser the inverse covariance.

mode : 'cd', 'lars', default 'cd' The Lasso solver to use: coordinate descent or LARS. Use LARS for very sparse underlying graphs, where p > n. Elsewhere prefer cd which is more numerically stable.

tol : positive float, default 1e-4 The tolerance to declare convergence: if the dual gap goes below this value, iterations are stopped.

enet_tol : positive float, optional The tolerance for the elastic net solver used to calculate the descent direction. This parameter controls the accuracy of the search direction for a given column update, not of the overall parameter estimate. Only used for mode='cd'.

max_iter : integer, default 100 The maximum number of iterations.

verbose : boolean, default False If verbose is True, the objective function and dual gap are plotted at each iteration.

assume_centered : boolean, default False If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation.

Attributes ---------- location_ : array-like, shape (n_features,) Estimated location, i.e. the estimated mean.

covariance_ : array-like, shape (n_features, n_features) Estimated covariance matrix

precision_ : array-like, shape (n_features, n_features) Estimated pseudo inverse matrix.

n_iter_ : int Number of iterations run.

Examples -------- >>> import numpy as np >>> from sklearn.covariance import GraphicalLasso >>> true_cov = np.array([0.8, 0.0, 0.2, 0.0], ... [0.0, 0.4, 0.0, 0.0], ... [0.2, 0.0, 0.3, 0.1], ... [0.0, 0.0, 0.1, 0.7]) >>> np.random.seed(0) >>> X = np.random.multivariate_normal(mean=0, 0, 0, 0, ... cov=true_cov, ... size=200) >>> cov = GraphicalLasso().fit(X) >>> np.around(cov.covariance_, decimals=3) array([0.816, 0.049, 0.218, 0.019], [0.049, 0.364, 0.017, 0.034], [0.218, 0.017, 0.322, 0.093], [0.019, 0.034, 0.093, 0.69 ]) >>> np.around(cov.location_, decimals=3) array(0.073, 0.04 , 0.038, 0.143)

See Also -------- graphical_lasso, GraphicalLassoCV

val error_norm : ?norm:string -> ?scaling:bool -> ?squared:bool -> comp_cov:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> Py.Object.t

Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius norm).

Parameters ---------- comp_cov : array-like of shape (n_features, n_features) The covariance to compare with.

norm : str The type of norm used to compute the error. Available error types:

  • 'frobenius' (default): sqrt(tr(A^t.A))
  • 'spectral': sqrt(max(eigenvalues(A^t.A)) where A is the error ``(comp_cov - self.covariance_)``.

scaling : bool If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled.

squared : bool Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned.

Returns ------- The Mean Squared Error (in the sense of the Frobenius norm) between `self` and `comp_cov` covariance estimators.

val fit : ?y:Py.Object.t -> x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> t

Fits the GraphicalLasso model to X.

Parameters ---------- X : ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate y : (ignored)

val get_params : ?deep:bool -> [> tag ] Obj.t -> Dict.t

Get parameters for this estimator.

Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns ------- params : mapping of string to any Parameter names mapped to their values.

val get_precision : [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Getter for the precision matrix.

Returns ------- precision_ : array-like The precision matrix associated to the current covariance object.

val mahalanobis : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Computes the squared Mahalanobis distances of given observations.

Parameters ---------- X : array-like of shape (n_samples, n_features) The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit.

Returns ------- dist : array, shape = n_samples, Squared Mahalanobis distances of the observations.

val score : ?y:Py.Object.t -> x_test:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> float

Computes the log-likelihood of a Gaussian data set with `self.covariance_` as an estimator of its covariance matrix.

Parameters ---------- X_test : array-like of shape (n_samples, n_features) Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering).

y not used, present for API consistence purpose.

Returns ------- res : float The likelihood of the data set with `self.covariance_` as an estimator of its covariance matrix.

val set_params : ?params:(string * Py.Object.t) list -> [> tag ] Obj.t -> t

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object.

Parameters ---------- **params : dict Estimator parameters.

Returns ------- self : object Estimator instance.

val location_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute location_: get value or raise Not_found if None.

val location_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute location_: get value as an option.

val covariance_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute covariance_: get value or raise Not_found if None.

val covariance_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute covariance_: get value as an option.

val precision_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute precision_: get value or raise Not_found if None.

val precision_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute precision_: get value as an option.

val n_iter_ : t -> int

Attribute n_iter_: get value or raise Not_found if None.

val n_iter_opt : t -> int option

Attribute n_iter_: get value as an option.

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.