Theil-Sen Estimator: robust multivariate regression model.
The algorithm calculates least square solutions on subsets with size n_subsamples of the samples in X. Any value of n_subsamples between the number of features and samples leads to an estimator with a compromise between robustness and efficiency. Since the number of least square solutions is 'n_samples choose n_subsamples', it can be extremely large and can therefore be limited with max_subpopulation. If this limit is reached, the subsets are chosen randomly. In a final step, the spatial median (or L1 median) is calculated of all least square solutions.
Read more in the :ref:`User Guide <theil_sen_regression>`.
Parameters ---------- fit_intercept : boolean, optional, default True Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations.
copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten.
max_subpopulation : int, optional, default 1e4 Instead of computing with a set of cardinality 'n choose k', where n is the number of samples and k is the number of subsamples (at least number of features), consider only a stochastic subpopulation of a given maximal size if 'n choose k' is larger than max_subpopulation. For other than small problem sizes this parameter will determine memory usage and runtime if n_subsamples is not changed.
n_subsamples : int, optional, default None Number of samples to calculate the parameters. This is at least the number of features (plus 1 if fit_intercept=True) and the number of samples as a maximum. A lower number leads to a higher breakdown point and a low efficiency while a high number leads to a low breakdown point and a high efficiency. If None, take the minimum number of subsamples leading to maximal robustness. If n_subsamples is set to n_samples, Theil-Sen is identical to least squares.
max_iter : int, optional, default 300 Maximum number of iterations for the calculation of spatial median.
tol : float, optional, default 1.e-3 Tolerance when calculating spatial median.
random_state : int, RandomState instance or None, optional, default None A random number generator instance to define the state of the random permutations generator. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`.
n_jobs : int or None, optional (default=None) Number of CPUs to use during the cross validation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details.
verbose : boolean, optional, default False Verbose mode when fitting the model.
Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (median of distribution).
intercept_ : float Estimated intercept of regression model.
breakdown_ : float Approximated breakdown point.
n_iter_ : int Number of iterations needed for the spatial median.
n_subpopulation_ : int Number of combinations taken into account from 'n choose k', where n is the number of samples and k is the number of subsamples.
Examples -------- >>> from sklearn.linear_model import TheilSenRegressor >>> from sklearn.datasets import make_regression >>> X, y = make_regression( ... n_samples=200, n_features=2, noise=4.0, random_state=0) >>> reg = TheilSenRegressor(random_state=0).fit(X, y) >>> reg.score(X, y) 0.9884... >>> reg.predict(X:1,
) array(-31.5871...
)
References ----------
- Theil-Sen Estimators in a Multiple Linear Regression Model, 2009 Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang http://home.olemiss.edu/~xdang/papers/MTSE.pdf