package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `BaseCrossValidator
]
type t = [ `BaseCrossValidator | `Object ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val get_n_splits : ?x:Py.Object.t -> ?y:Py.Object.t -> ?groups:Py.Object.t -> [> tag ] Obj.t -> int

Returns the number of splitting iterations in the cross-validator

val split : ?y:[> `ArrayLike ] Np.Obj.t -> ?groups:[> `ArrayLike ] Np.Obj.t -> x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> ([> `ArrayLike ] Np.Obj.t * [> `ArrayLike ] Np.Obj.t) Seq.t

Generate indices to split data into training and test set.

Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features.

y : array-like, of length n_samples The target variable for supervised learning problems.

groups : array-like, with shape (n_samples,), optional Group labels for the samples used while splitting the dataset into train/test set.

Yields ------ train : ndarray The training set indices for that split.

test : ndarray The testing set indices for that split.

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.