package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `EllipticEnvelope
]
type t = [ `BaseEstimator | `EllipticEnvelope | `Object | `OutlierMixin ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val as_outlier : t -> [ `OutlierMixin ] Obj.t
val as_estimator : t -> [ `BaseEstimator ] Obj.t
val create : ?store_precision:bool -> ?assume_centered:bool -> ?support_fraction:float -> ?contamination:float -> ?random_state:int -> unit -> t

An object for detecting outliers in a Gaussian distributed dataset.

Read more in the :ref:`User Guide <outlier_detection>`.

Parameters ---------- store_precision : boolean, optional (default=True) Specify if the estimated precision is stored.

assume_centered : boolean, optional (default=False) If True, the support of robust location and covariance estimates is computed, and a covariance estimate is recomputed from it, without centering the data. Useful to work with data whose mean is significantly equal to zero but is not exactly zero. If False, the robust location and covariance are directly computed with the FastMCD algorithm without additional treatment.

support_fraction : float in (0., 1.), optional (default=None) The proportion of points to be included in the support of the raw MCD estimate. If None, the minimum value of support_fraction will be used within the algorithm: `n_sample + n_features + 1 / 2`.

contamination : float in (0., 0.5), optional (default=0.1) The amount of contamination of the data set, i.e. the proportion of outliers in the data set.

random_state : int, RandomState instance or None, optional (default=None) The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`.

Attributes ---------- location_ : array-like, shape (n_features,) Estimated robust location

covariance_ : array-like, shape (n_features, n_features) Estimated robust covariance matrix

precision_ : array-like, shape (n_features, n_features) Estimated pseudo inverse matrix. (stored only if store_precision is True)

support_ : array-like, shape (n_samples,) A mask of the observations that have been used to compute the robust estimates of location and shape.

offset_ : float Offset used to define the decision function from the raw scores. We have the relation: ``decision_function = score_samples - offset_``. The offset depends on the contamination parameter and is defined in such a way we obtain the expected number of outliers (samples with decision function < 0) in training.

Examples -------- >>> import numpy as np >>> from sklearn.covariance import EllipticEnvelope >>> true_cov = np.array([.8, .3], ... [.3, .4]) >>> X = np.random.RandomState(0).multivariate_normal(mean=0, 0, ... cov=true_cov, ... size=500) >>> cov = EllipticEnvelope(random_state=0).fit(X) >>> # predict returns 1 for an inlier and -1 for an outlier >>> cov.predict([0, 0], ... [3, 3]) array( 1, -1) >>> cov.covariance_ array([0.7411..., 0.2535...], [0.2535..., 0.3053...]) >>> cov.location_ array(0.0813... , 0.0427...)

See Also -------- EmpiricalCovariance, MinCovDet

Notes ----- Outlier detection from covariance estimation may break or not perform well in high-dimensional settings. In particular, one will always take care to work with ``n_samples > n_features ** 2``.

References ---------- .. 1 Rousseeuw, P.J., Van Driessen, K. 'A fast algorithm for the minimum covariance determinant estimator' Technometrics 41(3), 212 (1999)

val correct_covariance : data:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Apply a correction to raw Minimum Covariance Determinant estimates.

Correction using the empirical correction factor suggested by Rousseeuw and Van Driessen in RVD_.

Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates.

References ----------

.. RVD A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS

Returns ------- covariance_corrected : array-like, shape (n_features, n_features) Corrected robust covariance estimate.

val decision_function : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Compute the decision function of the given observations.

Parameters ---------- X : array-like, shape (n_samples, n_features)

Returns -------

decision : array-like, shape (n_samples, ) Decision function of the samples. It is equal to the shifted Mahalanobis distances. The threshold for being an outlier is 0, which ensures a compatibility with other outlier detection algorithms.

val error_norm : ?norm:string -> ?scaling:bool -> ?squared:bool -> comp_cov:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> Py.Object.t

Computes the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius norm).

Parameters ---------- comp_cov : array-like of shape (n_features, n_features) The covariance to compare with.

norm : str The type of norm used to compute the error. Available error types:

  • 'frobenius' (default): sqrt(tr(A^t.A))
  • 'spectral': sqrt(max(eigenvalues(A^t.A)) where A is the error ``(comp_cov - self.covariance_)``.

scaling : bool If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled.

squared : bool Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned.

Returns ------- The Mean Squared Error (in the sense of the Frobenius norm) between `self` and `comp_cov` covariance estimators.

val fit : ?y:Py.Object.t -> x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> t

Fit the EllipticEnvelope model.

Parameters ---------- X : numpy array or sparse matrix, shape (n_samples, n_features). Training data

y : Ignored not used, present for API consistency by convention.

val fit_predict : ?y:Py.Object.t -> x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Perform fit on X and returns labels for X.

Returns -1 for outliers and 1 for inliers.

Parameters ---------- X : ndarray, shape (n_samples, n_features) Input data.

y : Ignored Not used, present for API consistency by convention.

Returns ------- y : ndarray, shape (n_samples,) 1 for inliers, -1 for outliers.

val get_params : ?deep:bool -> [> tag ] Obj.t -> Dict.t

Get parameters for this estimator.

Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns ------- params : mapping of string to any Parameter names mapped to their values.

val get_precision : [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Getter for the precision matrix.

Returns ------- precision_ : array-like The precision matrix associated to the current covariance object.

val mahalanobis : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Computes the squared Mahalanobis distances of given observations.

Parameters ---------- X : array-like of shape (n_samples, n_features) The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit.

Returns ------- dist : array, shape = n_samples, Squared Mahalanobis distances of the observations.

val predict : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Predict the labels (1 inlier, -1 outlier) of X according to the fitted model.

Parameters ---------- X : array-like, shape (n_samples, n_features)

Returns ------- is_inlier : array, shape (n_samples,) Returns -1 for anomalies/outliers and +1 for inliers.

val reweight_covariance : data:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t * [> `ArrayLike ] Np.Obj.t * Py.Object.t

Re-weight raw Minimum Covariance Determinant estimates.

Re-weight observations using Rousseeuw's method (equivalent to deleting outlying observations from the data set before computing location and covariance estimates) described in RVDriessen_.

Parameters ---------- data : array-like, shape (n_samples, n_features) The data matrix, with p features and n samples. The data set must be the one which was used to compute the raw estimates.

References ----------

.. RVDriessen A Fast Algorithm for the Minimum Covariance Determinant Estimator, 1999, American Statistical Association and the American Society for Quality, TECHNOMETRICS

Returns ------- location_reweighted : array-like, shape (n_features, ) Re-weighted robust location estimate.

covariance_reweighted : array-like, shape (n_features, n_features) Re-weighted robust covariance estimate.

support_reweighted : array-like, type boolean, shape (n_samples,) A mask of the observations that have been used to compute the re-weighted robust location and covariance estimates.

val score : ?sample_weight:[> `ArrayLike ] Np.Obj.t -> x:[> `ArrayLike ] Np.Obj.t -> y:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> float

Returns the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters ---------- X : array-like, shape (n_samples, n_features) Test samples.

y : array-like, shape (n_samples,) or (n_samples, n_outputs) True labels for X.

sample_weight : array-like, shape (n_samples,), optional Sample weights.

Returns ------- score : float Mean accuracy of self.predict(X) wrt. y.

val score_samples : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Compute the negative Mahalanobis distances.

Parameters ---------- X : array-like, shape (n_samples, n_features)

Returns ------- negative_mahal_distances : array-like, shape (n_samples, ) Opposite of the Mahalanobis distances.

val set_params : ?params:(string * Py.Object.t) list -> [> tag ] Obj.t -> t

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object.

Parameters ---------- **params : dict Estimator parameters.

Returns ------- self : object Estimator instance.

val location_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute location_: get value or raise Not_found if None.

val location_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute location_: get value as an option.

val covariance_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute covariance_: get value or raise Not_found if None.

val covariance_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute covariance_: get value as an option.

val precision_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute precision_: get value or raise Not_found if None.

val precision_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute precision_: get value as an option.

val support_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute support_: get value or raise Not_found if None.

val support_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute support_: get value as an option.

val offset_ : t -> float

Attribute offset_: get value or raise Not_found if None.

val offset_opt : t -> float option

Attribute offset_: get value as an option.

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.