Gaussian process regression (GPR).
The implementation is based on Algorithm 2.1 of Gaussian Processes for Machine Learning (GPML) by Rasmussen and Williams.
In addition to standard scikit-learn estimator API, GaussianProcessRegressor:
* allows prediction without prior fitting (based on the GP prior) * provides an additional method sample_y(X), which evaluates samples drawn from the GPR (prior or posterior) at given inputs * exposes a method log_marginal_likelihood(theta), which can be used externally for other ways of selecting hyperparameters, e.g., via Markov chain Monte Carlo.
Read more in the :ref:`User Guide <gaussian_process>`.
.. versionadded:: 0.18
Parameters ---------- kernel : kernel object The kernel specifying the covariance function of the GP. If None is passed, the kernel '1.0 * RBF(1.0)' is used as default. Note that the kernel's hyperparameters are optimized during fitting.
alpha : float or array-like, optional (default: 1e-10) Value added to the diagonal of the kernel matrix during fitting. Larger values correspond to increased noise level in the observations. This can also prevent a potential numerical issue during fitting, by ensuring that the calculated values form a positive definite matrix. If an array is passed, it must have the same number of entries as the data used for fitting and is used as datapoint-dependent noise level. Note that this is equivalent to adding a WhiteKernel with c=alpha. Allowing to specify the noise level directly as a parameter is mainly for convenience and for consistency with Ridge.
optimizer : string or callable, optional (default: 'fmin_l_bfgs_b') Can either be one of the internally supported optimizers for optimizing the kernel's parameters, specified by a string, or an externally defined optimizer passed as a callable. If a callable is passed, it must have the signature::
def optimizer(obj_func, initial_theta, bounds): # * 'obj_func' is the objective function to be minimized, which # takes the hyperparameters theta as parameter and an # optional flag eval_gradient, which determines if the # gradient is returned additionally to the function value # * 'initial_theta': the initial value for theta, which can be # used by local optimizers # * 'bounds': the bounds on the values of theta .... # Returned are the best found hyperparameters theta and # the corresponding value of the target function. return theta_opt, func_min
Per default, the 'L-BGFS-B' algorithm from scipy.optimize.minimize is used. If None is passed, the kernel's parameters are kept fixed. Available internal optimizers are::
'fmin_l_bfgs_b'
n_restarts_optimizer : int, optional (default: 0) The number of restarts of the optimizer for finding the kernel's parameters which maximize the log-marginal likelihood. The first run of the optimizer is performed from the kernel's initial parameters, the remaining ones (if any) from thetas sampled log-uniform randomly from the space of allowed theta-values. If greater than 0, all bounds must be finite. Note that n_restarts_optimizer == 0 implies that one run is performed.
normalize_y : boolean, optional (default: False) Whether the target values y are normalized, i.e., the mean of the observed target values become zero. This parameter should be set to True if the target values' mean is expected to differ considerable from zero. When enabled, the normalization effectively modifies the GP's prior based on the data, which contradicts the likelihood principle; normalization is thus disabled per default.
copy_X_train : bool, optional (default: True) If True, a persistent copy of the training data is stored in the object. Otherwise, just a reference to the training data is stored, which might cause predictions to change if the data is modified externally.
random_state : int, RandomState instance or None, optional (default: None) The generator used to initialize the centers. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`.
Attributes ---------- X_train_ : sequence of length n_samples Feature vectors or other representations of training data (also required for prediction). Could either be array-like with shape = (n_samples, n_features) or a list of objects.
y_train_ : array-like of shape (n_samples,) or (n_samples, n_targets) Target values in training data (also required for prediction)
kernel_ : kernel object The kernel used for prediction. The structure of the kernel is the same as the one passed as parameter but with optimized hyperparameters
L_ : array-like of shape (n_samples, n_samples) Lower-triangular Cholesky decomposition of the kernel in ``X_train_``
alpha_ : array-like of shape (n_samples,) Dual coefficients of training data points in kernel space
log_marginal_likelihood_value_ : float The log-marginal-likelihood of ``self.kernel_.theta``
Examples -------- >>> from sklearn.datasets import make_friedman2 >>> from sklearn.gaussian_process import GaussianProcessRegressor >>> from sklearn.gaussian_process.kernels import DotProduct, WhiteKernel >>> X, y = make_friedman2(n_samples=500, noise=0, random_state=0) >>> kernel = DotProduct() + WhiteKernel() >>> gpr = GaussianProcessRegressor(kernel=kernel, ... random_state=0).fit(X, y) >>> gpr.score(X, y) 0.3680... >>> gpr.predict(X:2,:
, return_std=True) (array(653.0..., 592.1...
), array(316.6..., 316.6...
))