A loguniform or reciprocal continuous random variable.
As an instance of the `rv_continuous` class, `Distribution` object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Methods ------- rvs(a, b, loc=0, scale=1, size=1, random_state=None) Random variates. pdf(x, a, b, loc=0, scale=1) Probability density function. logpdf(x, a, b, loc=0, scale=1) Log of the probability density function. cdf(x, a, b, loc=0, scale=1) Cumulative distribution function. logcdf(x, a, b, loc=0, scale=1) Log of the cumulative distribution function. sf(x, a, b, loc=0, scale=1) Survival function (also defined as ``1 - cdf``, but `sf` is sometimes more accurate). logsf(x, a, b, loc=0, scale=1) Log of the survival function. ppf(q, a, b, loc=0, scale=1) Percent point function (inverse of ``cdf`` --- percentiles). isf(q, a, b, loc=0, scale=1) Inverse survival function (inverse of ``sf``). moment(n, a, b, loc=0, scale=1) Non-central moment of order n stats(a, b, loc=0, scale=1, moments='mv') Mean('m'), variance('v'), skew('s'), and/or kurtosis('k'). entropy(a, b, loc=0, scale=1) (Differential) entropy of the RV. fit(data) Parameter estimates for generic data. See `scipy.stats.rv_continuous.fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_continuous.fit.html#scipy.stats.rv_continuous.fit>`__ for detailed documentation of the keyword arguments. expect(func, args=(a, b), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds) Expected value of a function (of one argument) with respect to the distribution. median(a, b, loc=0, scale=1) Median of the distribution. mean(a, b, loc=0, scale=1) Mean of the distribution. var(a, b, loc=0, scale=1) Variance of the distribution. std(a, b, loc=0, scale=1) Standard deviation of the distribution. interval(alpha, a, b, loc=0, scale=1) Endpoints of the range that contains alpha percent of the distribution
Notes ----- The probability density function for this class is:
.. math::
f(x, a, b) = \frac
x \log(b/a)
for :math:`a \le x \le b`, :math:`b > a > 0`. This class takes :math:`a` and :math:`b` as shape parameters. The probability density above is defined in the 'standardized' form. To shift and/or scale the distribution use the ``loc`` and ``scale`` parameters. Specifically, ``Distribution.pdf(x, a, b, loc, scale)`` is identically equivalent to ``Distribution.pdf(y, a, b) / scale`` with ``y = (x - loc) / scale``.
Examples -------- >>> from scipy.stats import Distribution >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> a, b = >>> mean, var, skew, kurt = Distribution.stats(a, b, moments='mvsk')
Display the probability density function (``pdf``):
>>> x = np.linspace(Distribution.ppf(0.01, a, b), ... Distribution.ppf(0.99, a, b), 100) >>> ax.plot(x, Distribution.pdf(x, a, b), ... 'r-', lw=5, alpha=0.6, label='Distribution pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a 'frozen' RV object holding the given parameters fixed.
Freeze the distribution and display the frozen ``pdf``:
>>> rv = Distribution(a, b) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of ``cdf`` and ``ppf``:
>>> vals = Distribution.ppf(0.001, 0.5, 0.999
, a, b) >>> np.allclose(0.001, 0.5, 0.999
, Distribution.cdf(vals, a, b)) True
Generate random numbers:
>>> r = Distribution.rvs(a, b, size=1000)
And compare the histogram:
>>> ax.hist(r, density=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
This doesn't show the equal probability of ``0.01``, ``0.1`` and ``1``. This is best when the x-axis is log-scaled:
>>> import numpy as np >>> fig, ax = plt.subplots(1, 1) >>> ax.hist(np.log10(r)) >>> ax.set_ylabel('Frequency') >>> ax.set_xlabel('Value of random variable') >>> ax.xaxis.set_major_locator(plt.FixedLocator(-2, -1, 0
)) >>> ticks = '$10^{{ {} }}$'.format(i) for i in [-2, -1, 0]
>>> ax.set_xticklabels(ticks) # doctest: +SKIP >>> plt.show()
This random variable will be log-uniform regardless of the base chosen for ``a`` and ``b``. Let's specify with base ``2`` instead:
>>> rvs = Distribution(2**-2, 2**0).rvs(size=1000)
Values of ``1/4``, ``1/2`` and ``1`` are equally likely with this random variable. Here's the histogram:
>>> fig, ax = plt.subplots(1, 1) >>> ax.hist(np.log2(rvs)) >>> ax.set_ylabel('Frequency') >>> ax.set_xlabel('Value of random variable') >>> ax.xaxis.set_major_locator(plt.FixedLocator(-2, -1, 0
)) >>> ticks = '$2^{{ {} }}$'.format(i) for i in [-2, -1, 0]
>>> ax.set_xticklabels(ticks) # doctest: +SKIP >>> plt.show()