Compute Lasso path with coordinate descent
The Lasso optimization function varies for mono and multi-outputs.
For mono-output tasks it is::
(1 / (2 * n_samples)) * ||y - Xw||^2_2 + alpha * ||w||_1
For multi-output tasks it is::
(1 / (2 * n_samples)) * ||Y - XW||^2_Fro + alpha * ||W||_21
Where::
||W||_21 = \sum_i \sqrt\sum_j w_{ij
^2
}
i.e. the sum of norm of each row.
Read more in the :ref:`User Guide <lasso>`.
Parameters ---------- X : array-like, sparse matrix
of shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If ``y`` is mono-output then ``X`` can be sparse.
y : array-like, sparse matrix
of shape (n_samples,) or (n_samples, n_outputs) Target values
eps : float, default=1e-3 Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``
n_alphas : int, default=100 Number of alphas along the regularization path
alphas : ndarray, default=None List of alphas where to compute the models. If ``None`` alphas are set automatically
precompute : 'auto', bool or array-like of shape (n_features, n_features), default='auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument.
Xy : array-like of shape (n_features,) or (n_features, n_outputs), default=None Xy = np.dot(X.T, y) that can be precomputed. It is useful only when the Gram matrix is precomputed.
copy_X : bool, default=True If ``True``, X will be copied; else, it may be overwritten.
coef_init : ndarray of shape (n_features, ), default=None The initial values of the coefficients.
verbose : bool or int, default=False Amount of verbosity.
return_n_iter : bool, default=False whether to return the number of iterations or not.
positive : bool, default=False If set to True, forces coefficients to be positive. (Only allowed when ``y.ndim == 1``).
**params : kwargs keyword arguments passed to the coordinate descent solver.
Returns ------- alphas : ndarray of shape (n_alphas,) The alphas along the path where models are computed.
coefs : ndarray of shape (n_features, n_alphas) or (n_outputs, n_features, n_alphas) Coefficients along the path.
dual_gaps : ndarray of shape (n_alphas,) The dual gaps at the end of the optimization for each alpha.
n_iters : list of int The number of iterations taken by the coordinate descent optimizer to reach the specified tolerance for each alpha.
Notes ----- For an example, see :ref:`examples/linear_model/plot_lasso_coordinate_descent_path.py <sphx_glr_auto_examples_linear_model_plot_lasso_coordinate_descent_path.py>`.
To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array.
Note that in certain cases, the Lars solver may be significantly faster to implement this functionality. In particular, linear interpolation can be used to retrieve model coefficients between the values output by lars_path
Examples --------
Comparing lasso_path and lars_path with interpolation:
>>> X = np.array([1, 2, 3.1], [2.3, 5.4, 4.3]
).T >>> y = np.array(1, 2, 3.1
) >>> # Use lasso_path to compute a coefficient path >>> _, coef_path, _ = lasso_path(X, y, alphas=5., 1., .5
) >>> print(coef_path) [0. 0. 0.46874778]
[0.2159048 0.4425765 0.23689075]
>>> # Now use lars_path and 1D linear interpolation to compute the >>> # same path >>> from sklearn.linear_model import lars_path >>> alphas, active, coef_path_lars = lars_path(X, y, method='lasso') >>> from scipy import interpolate >>> coef_path_continuous = interpolate.interp1d(alphas::-1
, ... coef_path_lars:, ::-1
) >>> print(coef_path_continuous(5., 1., .5
)) [0. 0. 0.46915237]
[0.2159048 0.4425765 0.23668876]
See also -------- lars_path Lasso LassoLars LassoCV LassoLarsCV sklearn.decomposition.sparse_encode