Binarize labels in a one-vs-all fashion
Several regression and binary classification algorithms are available in scikit-learn. A simple way to extend these algorithms to the multi-class classification case is to use the so-called one-vs-all scheme.
At learning time, this simply consists in learning one regressor or binary classifier per class. In doing so, one needs to convert multi-class labels to binary labels (belong or does not belong to the class). LabelBinarizer makes this process easy with the transform method.
At prediction time, one assigns the class for which the corresponding model gave the greatest confidence. LabelBinarizer makes this easy with the inverse_transform method.
Read more in the :ref:`User Guide <preprocessing_targets>`.
Parameters ----------
neg_label : int (default: 0) Value with which negative labels must be encoded.
pos_label : int (default: 1) Value with which positive labels must be encoded.
sparse_output : boolean (default: False) True if the returned array from transform is desired to be in sparse CSR format.
Attributes ----------
classes_ : array of shape n_class
Holds the label for each class.
y_type_ : str, Represents the type of the target data as evaluated by utils.multiclass.type_of_target. Possible type are 'continuous', 'continuous-multioutput', 'binary', 'multiclass', 'multiclass-multioutput', 'multilabel-indicator', and 'unknown'.
sparse_input_ : boolean, True if the input data to transform is given as a sparse matrix, False otherwise.
Examples -------- >>> from sklearn import preprocessing >>> lb = preprocessing.LabelBinarizer() >>> lb.fit(1, 2, 6, 4, 2
) LabelBinarizer() >>> lb.classes_ array(1, 2, 4, 6
) >>> lb.transform(1, 6
) array([1, 0, 0, 0],
[0, 0, 0, 1]
)
Binary targets transform to a column vector
>>> lb = preprocessing.LabelBinarizer() >>> lb.fit_transform('yes', 'no', 'no', 'yes'
) array([1],
[0],
[0],
[1]
)
Passing a 2D matrix for multilabel classification
>>> import numpy as np >>> lb.fit(np.array([0, 1, 1], [1, 0, 0]
)) LabelBinarizer() >>> lb.classes_ array(0, 1, 2
) >>> lb.transform(0, 1, 2, 1
) array([1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[0, 1, 0]
)
See also -------- label_binarize : function to perform the transform operation of LabelBinarizer with fixed classes. sklearn.preprocessing.OneHotEncoder : encode categorical features using a one-hot aka one-of-K scheme.