package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `LabelSpreading
]
type t = [ `BaseEstimator | `BaseLabelPropagation | `ClassifierMixin | `LabelSpreading | `Object ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val as_classifier : t -> [ `ClassifierMixin ] Obj.t
val as_estimator : t -> [ `BaseEstimator ] Obj.t
val as_label_propagation : t -> [ `BaseLabelPropagation ] Obj.t
val create : ?kernel:[ `Knn | `Callable of Py.Object.t | `Rbf ] -> ?gamma:float -> ?n_neighbors:int -> ?alpha:float -> ?max_iter:int -> ?tol:float -> ?n_jobs:int -> unit -> t

LabelSpreading model for semi-supervised learning

This model is similar to the basic Label Propagation algorithm, but uses affinity matrix based on the normalized graph Laplacian and soft clamping across the labels.

Read more in the :ref:`User Guide <label_propagation>`.

Parameters ---------- kernel : 'knn', 'rbf' or callable, default='rbf' String identifier for kernel function to use or the kernel function itself. Only 'rbf' and 'knn' strings are valid inputs. The function passed should take two inputs, each of shape (n_samples, n_features), and return a (n_samples, n_samples) shaped weight matrix.

gamma : float, default=20 Parameter for rbf kernel.

n_neighbors : int, default=7 Parameter for knn kernel which is a strictly positive integer.

alpha : float, default=0.2 Clamping factor. A value in (0, 1) that specifies the relative amount that an instance should adopt the information from its neighbors as opposed to its initial label. alpha=0 means keeping the initial label information; alpha=1 means replacing all initial information.

max_iter : int, default=30 Maximum number of iterations allowed.

tol : float, default=1e-3 Convergence tolerance: threshold to consider the system at steady state.

n_jobs : int, default=None The number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details.

Attributes ---------- X_ : ndarray of shape (n_samples, n_features) Input array.

classes_ : ndarray of shape (n_classes,) The distinct labels used in classifying instances.

label_distributions_ : ndarray of shape (n_samples, n_classes) Categorical distribution for each item.

transduction_ : ndarray of shape (n_samples,) Label assigned to each item via the transduction.

n_iter_ : int Number of iterations run.

Examples -------- >>> import numpy as np >>> from sklearn import datasets >>> from sklearn.semi_supervised import LabelSpreading >>> label_prop_model = LabelSpreading() >>> iris = datasets.load_iris() >>> rng = np.random.RandomState(42) >>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3 >>> labels = np.copy(iris.target) >>> labelsrandom_unlabeled_points = -1 >>> label_prop_model.fit(iris.data, labels) LabelSpreading(...)

References ---------- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, Bernhard Schoelkopf. Learning with local and global consistency (2004) http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219

See Also -------- LabelPropagation : Unregularized graph based semi-supervised learning

val fit : x:[> `ArrayLike ] Np.Obj.t -> y:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> t

Fit a semi-supervised label propagation model based

All the input data is provided matrix X (labeled and unlabeled) and corresponding label matrix y with a dedicated marker value for unlabeled samples.

Parameters ---------- X : array-like of shape (n_samples, n_features) A matrix of shape (n_samples, n_samples) will be created from this.

y : array-like of shape (n_samples,) `n_labeled_samples` (unlabeled points are marked as -1) All unlabeled samples will be transductively assigned labels.

Returns ------- self : object

val get_params : ?deep:bool -> [> tag ] Obj.t -> Dict.t

Get parameters for this estimator.

Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns ------- params : mapping of string to any Parameter names mapped to their values.

val predict : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Performs inductive inference across the model.

Parameters ---------- X : array-like of shape (n_samples, n_features) The data matrix.

Returns ------- y : ndarray of shape (n_samples,) Predictions for input data.

val predict_proba : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Predict probability for each possible outcome.

Compute the probability estimates for each single sample in X and each possible outcome seen during training (categorical distribution).

Parameters ---------- X : array-like of shape (n_samples, n_features) The data matrix.

Returns ------- probabilities : ndarray of shape (n_samples, n_classes) Normalized probability distributions across class labels.

val score : ?sample_weight:[> `ArrayLike ] Np.Obj.t -> x:[> `ArrayLike ] Np.Obj.t -> y:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> float

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters ---------- X : array-like of shape (n_samples, n_features) Test samples.

y : array-like of shape (n_samples,) or (n_samples, n_outputs) True labels for X.

sample_weight : array-like of shape (n_samples,), default=None Sample weights.

Returns ------- score : float Mean accuracy of self.predict(X) wrt. y.

val set_params : ?params:(string * Py.Object.t) list -> [> tag ] Obj.t -> t

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object.

Parameters ---------- **params : dict Estimator parameters.

Returns ------- self : object Estimator instance.

val x_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute X_: get value or raise Not_found if None.

val x_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute X_: get value as an option.

val classes_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute classes_: get value or raise Not_found if None.

val classes_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute classes_: get value as an option.

val label_distributions_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute label_distributions_: get value or raise Not_found if None.

val label_distributions_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute label_distributions_: get value as an option.

val transduction_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute transduction_: get value or raise Not_found if None.

val transduction_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute transduction_: get value as an option.

val n_iter_ : t -> int

Attribute n_iter_: get value or raise Not_found if None.

val n_iter_opt : t -> int option

Attribute n_iter_: get value as an option.

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.