package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type t
val of_pyobject : Py.Object.t -> t
val to_pyobject : t -> Py.Object.t
val create : precision:Ndarray.t -> recall:Ndarray.t -> average_precision:float -> estimator_name:string -> unit -> t

Precision Recall visualization.

It is recommend to use :func:`~sklearn.metrics.plot_precision_recall_curve` to create a visualizer. All parameters are stored as attributes.

Read more in the :ref:`User Guide <visualizations>`.

Parameters ----------- precision : ndarray Precision values.

recall : ndarray Recall values.

average_precision : float Average precision.

estimator_name : str Name of estimator.

Attributes ---------- line_ : matplotlib Artist Precision recall curve.

ax_ : matplotlib Axes Axes with precision recall curve.

figure_ : matplotlib Figure Figure containing the curve.

val plot : ?ax:Py.Object.t -> ?name:string -> ?kwargs:(string * Py.Object.t) list -> t -> Py.Object.t

Plot visualization.

Extra keyword arguments will be passed to matplotlib's `plot`.

Parameters ---------- ax : Matplotlib Axes, default=None Axes object to plot on. If `None`, a new figure and axes is created.

name : str, default=None Name of precision recall curve for labeling. If `None`, use the name of the estimator.

**kwargs : dict Keyword arguments to be passed to matplotlib's `plot`.

Returns ------- display : :class:`~sklearn.metrics.PrecisionRecallDisplay` Object that stores computed values.

val line_ : t -> Py.Object.t

Attribute line_: see constructor for documentation

val ax_ : t -> Py.Object.t

Attribute ax_: see constructor for documentation

val figure_ : t -> Py.Object.t

Attribute figure_: see constructor for documentation

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.