package rocq-runtime

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file sorts.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
(************************************************************************)
(*         *      The Rocq Prover / The Rocq Development Team           *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Univ

module QGlobal = struct
  open Names

  type t = {
    library : DirPath.t;
    id : Id.t
  }

  let make library id = { library ; id }

  let repr x = (x.library, x.id)

  let equal u1 u2 =
    Id.equal u1.id u2.id &&
    DirPath.equal u1.library u2.library

  let hash u = Hashset.Combine.combine (Id.hash u.id) (DirPath.hash u.library)

  let compare u1 u2 =
    let c = Id.compare u1.id u2.id in
    if c <> 0 then c
    else
      DirPath.compare u1.library u2.library

  let to_string { library = d ; id } =
    DirPath.to_string d ^ "." ^ Id.to_string id
end

module QVar =
struct
  type repr =
    | Var of int
    | Unif of string * int
    | Global of QGlobal.t
  type t = repr

  let make_var n = Var n

  let make_unif s n = Unif (s,n)

  let make_global id = Global id

  let var_index = function
    | Var q -> Some q
    | Unif _ -> None
    | Global _ -> None

  let hash = function
    | Var q -> Hashset.Combine.combinesmall 1 q
    | Unif (s,q) -> Hashset.Combine.(combinesmall 2 (combine (CString.hash s) q))
    | Global id -> Hashset.Combine.combinesmall 3 (QGlobal.hash id)

  module Hstruct = struct
    type nonrec t = t

    open Hashset.Combine

    let hashcons = function
      | Var qv as q -> combinesmall 1 qv, q
      | Unif (s,i) as q ->
        let hs, s' = CString.hcons s in
        combinesmall 2 (combine hs i), if s == s' then q else Unif (s',i)
      | Global id as q -> combinesmall 3 (QGlobal.hash id), q

    let eq a b =
      match a, b with
      | Var a, Var b -> Int.equal a b
      | Unif (sa, ia), Unif (sb, ib) -> sa == sb && Int.equal ia ib
      | Global ida, Global idb -> QGlobal.equal ida idb
      | (Var _ | Unif _| Global _), _ -> false
  end

  module Hasher = Hashcons.Make(Hstruct)

  let hcons = Hashcons.simple_hcons Hasher.generate Hasher.hcons ()

  let compare a b = match a, b with
    | Var a, Var b -> Int.compare a b
    | Unif (s1,i1), Unif (s2,i2) ->
      let c = Int.compare i1 i2 in
      if c <> 0 then c
      else CString.compare s1 s2
    | Global ida, Global idb -> QGlobal.compare ida idb
    | Var _, _ -> -1
    | _, Var _ -> 1
    | Unif _, _ -> -1
    | _, Unif _ -> 1

  let equal a b = match a, b with
    | Var a, Var b ->  Int.equal a b
    | Unif (s1,i1), Unif (s2,i2) ->
      Int.equal i1 i2 && CString.equal s1 s2
    | Global ida, Global idb -> QGlobal.equal ida idb
    | (Var _| Unif _ | Global _), _ -> false

  let to_string = function
    | Var q -> Printf.sprintf "β%d" q
    | Unif (s,q) ->
      let s = if CString.is_empty s then "" else s^"." in
      Printf.sprintf "%sα%d" s q
    | Global id -> Printf.sprintf "γ%s" (QGlobal.to_string id)

  let raw_pr q = Pp.str (to_string q)

  let repr x = x
  let of_repr x = x

  module Self = struct type nonrec t = t let compare = compare end
  module Set = CSet.Make(Self)
  module Map = CMap.Make(Self)
end

module Quality = struct
  type constant = QProp | QSProp | QType
  type t = QVar of QVar.t | QConstant of constant

  let var i = QVar (QVar.make_var i)
  let global sg = QVar (QVar.make_global sg)

  let is_var x =
    match x with
    | QVar _ -> true
    | QConstant _ -> false

  let var_index = function
    | QVar q -> QVar.var_index q
    | QConstant _ -> None

  module Constants = struct
    let equal a b = match a, b with
    | QProp, QProp | QSProp, QSProp | QType, QType -> true
    | (QProp | QSProp | QType), _ -> false

    let compare a b = match a, b with
      | QProp, QProp -> 0
      | QProp, _ -> -1
      | _, QProp -> 1
      | QSProp, QSProp -> 0
      | QSProp, _ -> -1
      | _, QSProp -> 1
      | QType, QType -> 0

    let eliminates_to a b = match a, b with
      | _, QSProp -> true
      | (QType | QProp), QProp -> true
      | QType, _  -> true
      | _, _ -> false

    let pr = function
      | QProp -> Pp.str "Prop"
      | QSProp -> Pp.str "SProp"
      | QType -> Pp.str "Type"

    let hash = function
      | QSProp -> 0
      | QProp -> 1
      | QType -> 2

    let all = [QSProp; QProp; QType]
  end

  let equal a b = match a, b with
    | QVar a, QVar b -> QVar.equal a b
    | QConstant a, QConstant b -> Constants.equal a b
    | (QVar _ | QConstant _), _ -> false

  let compare a b = match a, b with
    | QVar a, QVar b -> QVar.compare a b
    | QVar _, _ -> -1
    | _, QVar _ -> 1
    | QConstant a, QConstant b -> Constants.compare a b

  let eliminates_to a b = match a, b with
    | QConstant QType, _ -> true
    | QVar q, QVar q' -> QVar.equal q q' (* "trivial" check *)
    | QConstant a, QConstant b -> Constants.eliminates_to a b
    | _, (QVar _ | QConstant _) -> false

  let pr prv = function
    | QVar v -> prv v
    | QConstant q -> Constants.pr q

  let raw_pr q = pr QVar.raw_pr q

  let all_constants = List.map (fun q -> QConstant q) Constants.all
  let all = var (-1) :: all_constants

  let hash = let open Hashset.Combine in function
    | QConstant q -> Constants.hash q
    | QVar q -> combinesmall 3 (QVar.hash q)

  let subst f = function
    | QConstant _ as q -> q
    | QVar qv as q ->
      match f qv with
      | QConstant _ as q -> q
      | QVar qv' as q' ->
        if qv == qv' then q else q'

  let subst_fn m v =
    match QVar.Map.find_opt v m with
    | Some v -> v
    | None -> QVar v

  module Hstruct = struct
    type nonrec t = t

    let hashcons = function
      | QConstant c as q -> Constants.hash c, q
      | QVar qv as q ->
        let hqv, qv' = QVar.hcons qv in
        Hashset.Combine.combinesmall 3 hqv, if qv == qv' then q else QVar qv'

    let eq a b =
      match a, b with
      | QVar a, QVar b -> a == b
      | QVar _, _ -> false
      | (QConstant _), _ -> equal a b
  end

  module Hasher = Hashcons.Make(Hstruct)

  let hcons = Hashcons.simple_hcons Hasher.generate Hasher.hcons ()

  let qsprop = snd @@ hcons (QConstant QSProp)
  let qprop = snd @@ hcons (QConstant QProp)
  let qtype = snd @@ hcons (QConstant QType)

  let is_qsprop = equal qsprop
  let is_qprop = equal qprop
  let is_qtype = equal qtype

  module Self = struct type nonrec t = t let compare = compare end
  module Set = CSet.Make(Self)
  module Map = CMap.Make(Self)

  type pattern =
    | PQVar of int option | PQConstant of constant

  let pattern_match ps s qusubst =
    match ps, s with
    | PQConstant qc, QConstant qc' -> if Constants.equal qc qc' then Some qusubst else None
    | PQVar qio, q -> Some (Partial_subst.maybe_add_quality qio q qusubst)
    | PQConstant _, QVar _ -> None
end

module QConstraint = struct
  type kind = Equal | Leq

  let eq_kind : kind -> kind -> bool = (=)
  let compare_kind : kind -> kind -> int = compare

  let pr_kind = function
    | Equal -> Pp.str "="
    | Leq -> Pp.str "<="

  type t = Quality.t * kind * Quality.t

  let equal (a,k,b) (a',k',b') =
    eq_kind k k' && Quality.equal a a' && Quality.equal b b'

  let compare (a,k,b) (a',k',b') =
    let c = compare_kind k k' in
    if c <> 0 then c
    else
      let c = Quality.compare a a' in
      if c <> 0 then c
      else Quality.compare b b'

  let trivial (a,(Equal|Leq),b) = Quality.equal a b

  let pr prq (a,k,b) =
    let open Pp in
    hov 1 (Quality.pr prq a ++ spc() ++ pr_kind k ++ spc() ++ Quality.pr prq b)

  let raw_pr x = pr QVar.raw_pr x

end

module QConstraints = struct include CSet.Make(QConstraint)
  let trivial = for_all QConstraint.trivial

  let pr prq c =
    let open Pp in
    v 0 (prlist_with_sep spc (fun (u1,op,u2) ->
      hov 0 (Quality.pr prq u1 ++ QConstraint.pr_kind op ++ Quality.pr prq u2))
       (elements c))

end

let enforce_eq_quality a b csts =
  if Quality.equal a b then csts
  else QConstraints.add (a,QConstraint.Equal,b) csts

let enforce_leq_quality a b csts =
  if Quality.equal a b then csts
  else match a, b with
    | Quality.(QConstant QProp), Quality.(QConstant QType) -> csts
    | _ -> QConstraints.add (a,QConstraint.Leq,b) csts

module QUConstraints = struct

  type t = QConstraints.t * Univ.Constraints.t

  let empty = QConstraints.empty, Univ.Constraints.empty

  let union (qcsts,ucsts) (qcsts',ucsts') =
    QConstraints.union qcsts qcsts', Constraints.union ucsts ucsts'
end

type t =
  | SProp
  | Prop
  | Set
  | Type of Universe.t
  | QSort of QVar.t * Universe.t

let sprop = SProp
let prop = Prop
let set = Set
let type1 = Type Universe.type1
let qsort q u = QSort (q, u)

let sort_of_univ u =
  if Universe.is_type0 u then set else Type u

let univ_of_sort s =
  match s with
  | SProp | Prop | Set -> Universe.type0
  | Type u | QSort (_, u) -> u

let make q u =
  let open Quality in
  match q with
  | QVar q -> qsort q u
  | QConstant QSProp -> sprop
  | QConstant QProp -> prop
  | QConstant QType -> sort_of_univ u

let compare s1 s2 =
  if s1 == s2 then 0 else
    match s1, s2 with
    | SProp, SProp -> 0
    | SProp, (Prop | Set | Type _ | QSort _) -> -1
    | (Prop | Set | Type _ | QSort _), SProp -> 1
    | Prop, Prop -> 0
    | Prop, (Set | Type _ | QSort _) -> -1
    | Set, Prop -> 1
    | Set, Set -> 0
    | Set, (Type _ | QSort _) -> -1
    | Type _, QSort _ -> -1
    | Type u1, Type u2 -> Universe.compare u1 u2
    | Type _, (Prop | Set) -> 1
    | QSort (q1, u1), QSort (q2, u2) ->
      let c = QVar.compare q1 q2 in
      if Int.equal c 0 then Universe.compare u1 u2 else c
    | QSort _, (Prop | Set | Type _) -> 1

let quality s =
  match s with
  | SProp -> Quality.qsprop
  | Prop -> Quality.qprop
  | Set | Type _ -> Quality.qtype
  | QSort (q,_) -> Quality.QVar q

let eliminates_to s1 s2 = Quality.eliminates_to (quality s1) (quality s2)

let equal s1 s2 = Int.equal (compare s1 s2) 0

let super = function
  | SProp | Prop | Set -> Type (Universe.type1)
  | Type u | QSort (_, u) -> Type (Universe.super u)

let is_sprop = function
  | SProp -> true
  | Prop | Set | Type _ | QSort _ -> false

let is_prop = function
  | Prop -> true
  | SProp | Set | Type _ | QSort _-> false

let is_set = function
  | Set -> true
  | SProp | Prop | Type _ | QSort _ -> false

let is_small = function
  | SProp | Prop | Set -> true
  | Type _ | QSort _ -> false

let levels s = match s with
| SProp | Prop -> Level.Set.empty
| Set -> Level.Set.singleton Level.set
| Type u | QSort (_, u) -> Universe.levels u

let subst_fn (fq,fu) = function
  | SProp | Prop | Set as s -> s
  | Type v as s ->
    let v' = fu v in
    if v' == v then s else sort_of_univ v'
  | QSort (q, v) as s ->
    let open Quality in
    match fq q with
    | QVar q' ->
      let v' = fu v in
      if q' == q && v' == v then s
      else qsort q' v'
    | QConstant QSProp -> sprop
    | QConstant QProp -> prop
    | QConstant QType -> sort_of_univ (fu v)

let quality = let open Quality in function
| Set | Type _ -> qtype
| Prop -> qprop
| SProp -> qsprop
| QSort (q, _) -> QVar q

open Hashset.Combine

let hash = function
  | SProp -> combinesmall 1 0
  | Prop -> combinesmall 1 1
  | Set -> combinesmall 1 2
  | Type u ->
    let h = Univ.Universe.hash u in
    combinesmall 2 h
  | QSort (q, u) ->
    let h = Univ.Universe.hash u in
    let h' = QVar.hash q in
    combinesmall 3 (combine h h')

module HSorts =
  Hashcons.Make(
    struct
      type nonrec t = t

      let hashcons = function
        | Type u as c ->
          let hu, u' = Universe.hcons u in
          combinesmall 2 hu, if u' == u then c else Type u'
        | QSort (q, u) as c ->
          let hq, q' = QVar.hcons q in
          let hu, u' = Universe.hcons u in
          combinesmall 3 (combine hu hq), if u' == u && q' == q then c else QSort (q', u')
        | SProp | Prop | Set as s -> hash s, s
      let eq s1 s2 = match (s1,s2) with
        | SProp, SProp | Prop, Prop | Set, Set -> true
        | (Type u1, Type u2) -> u1 == u2
        | QSort (q1, u1), QSort (q2, u2) -> q1 == q2 && u1 == u2
        | (SProp | Prop | Set | Type _ | QSort _), _ -> false
    end)

let hcons = Hashcons.simple_hcons HSorts.generate HSorts.hcons ()

(** On binders: is this variable proof relevant *)
type relevance = Relevant | Irrelevant | RelevanceVar of QVar.t

let relevance_equal r1 r2 = match r1,r2 with
  | Relevant, Relevant | Irrelevant, Irrelevant -> true
  | RelevanceVar q1, RelevanceVar q2 -> QVar.equal q1 q2
  | (Relevant | Irrelevant | RelevanceVar _), _ -> false

let relevance_hash = function
  | Relevant -> 0
  | Irrelevant -> 1
  | RelevanceVar q -> Hashset.Combine.combinesmall 2 (QVar.hash q)

let relevance_subst_fn f = function
  | Relevant | Irrelevant as r -> r
  | RelevanceVar qv as r ->
    let open Quality in
    match f qv with
    | QConstant QSProp -> Irrelevant
    | QConstant (QProp | QType) -> Relevant
    | QVar qv' ->
      if qv' == qv then r else RelevanceVar qv'

let relevance_of_sort = function
  | SProp -> Irrelevant
  | Prop | Set | Type _ -> Relevant
  | QSort (q, _) -> RelevanceVar q

let debug_print = function
  | SProp -> Pp.(str "SProp")
  | Prop -> Pp.(str "Prop")
  | Set -> Pp.(str "Set")
  | Type u -> Pp.(str "Type(" ++ Univ.Universe.raw_pr u ++ str ")")
  | QSort (q, u) -> Pp.(str "QSort(" ++ QVar.raw_pr q ++ str ","
                        ++ spc() ++ Univ.Universe.raw_pr u ++ str ")")

let pr prv pru = function
  | SProp -> Pp.(str "SProp")
  | Prop -> Pp.(str "Prop")
  | Set -> Pp.(str "Set")
  | Type u -> Pp.(str "Type@{" ++ pru u ++ str "}")
  | QSort (q, u) -> Pp.(str "Type@{" ++ prv q ++ str "|"
                        ++ spc() ++ pru u ++ str "}")

let raw_pr = pr QVar.raw_pr Univ.Universe.raw_pr

type pattern =
  | PSProp | PSSProp | PSSet | PSType of int option | PSQSort of int option * int option

let extract_level u =
  match Universe.level u with
  | Some l -> l
  | None -> CErrors.anomaly Pp.(str "Tried to extract level of an algebraic universe")

let extract_sort_level = function
  | Type u
  | QSort (_, u) -> extract_level u
  | Prop | SProp | Set -> Univ.Level.set

let pattern_match ps s qusubst =
  match ps, s with
  | PSProp, Prop -> Some qusubst
  | PSSProp, SProp -> Some qusubst
  | PSSet, Set -> Some qusubst
  | PSType uio, Set -> Some (Partial_subst.maybe_add_univ uio Univ.Level.set qusubst)
  | PSType uio, Type u -> Some (Partial_subst.maybe_add_univ uio (extract_level u) qusubst)
  | PSQSort (qio, uio), s -> Some (qusubst |> Partial_subst.maybe_add_quality qio (quality s) |> Partial_subst.maybe_add_univ uio (extract_sort_level s))
  | (PSProp | PSSProp | PSSet | PSType _), _ -> None