package rocq-runtime

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file tac2stdlib.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
(************************************************************************)
(*         *      The Rocq Prover / The Rocq Development Team           *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Names
open Genredexpr
open Tac2expr
open Tac2val
open Tac2ffi
open Tac2types
open Tac2extffi
open Proofview.Notations

module Value = Tac2ffi

(** Make a representation with a dummy from function *)
let make_to_repr f = Tac2ffi.make_repr (fun _ -> assert false) f

let return x = Proofview.tclUNIT x
let thaw f = f ()
let uthaw r f = Tac2ffi.to_fun1 Tac2ffi.of_unit (repr_to r) f ()

let to_name c = match Value.to_option Value.to_ident c with
| None -> Anonymous
| Some id -> Name id

let name = make_to_repr to_name

let to_occurrences = function
| ValInt 0 -> AllOccurrences
| ValBlk (0, [| vl |]) -> AllOccurrencesBut (Value.to_list Value.to_int vl)
| ValInt 1 -> NoOccurrences
| ValBlk (1, [| vl |]) -> OnlyOccurrences (Value.to_list Value.to_int vl)
| _ -> assert false

let occurrences = make_to_repr to_occurrences

let to_hyp_location_flag v = match Value.to_int v with
| 0 -> InHyp
| 1 -> InHypTypeOnly
| 2 -> InHypValueOnly
| _ -> assert false

let to_clause v = match Value.to_tuple v with
| [| hyps; concl |] ->
  let cast v = match Value.to_tuple v with
  | [| hyp; occ; flag |] ->
    (Value.to_ident hyp, to_occurrences occ, to_hyp_location_flag flag)
  | _ -> assert false
  in
  let hyps = Value.to_option (fun h -> Value.to_list cast h) hyps in
  { onhyps = hyps; concl_occs = to_occurrences concl; }
| _ -> assert false

let clause = make_to_repr to_clause

let to_red_strength = function
  | ValInt 0 -> Norm
  | ValInt 1 -> Head
  | _ -> assert false

let to_red_flag v : Tac2types.red_flag = match Value.to_tuple v with
| [| strength; beta; iota; fix; cofix; zeta; delta; const |] ->
  {
    rStrength = to_red_strength strength;
    rBeta = Value.to_bool beta;
    rMatch = Value.to_bool iota;
    rFix = Value.to_bool fix;
    rCofix = Value.to_bool cofix;
    rZeta = Value.to_bool zeta;
    rDelta = Value.to_bool delta;
    rConst = Value.to_list Value.to_reference const;
  }
| _ -> assert false

let red_flags = make_to_repr to_red_flag

let constr_with_occs = pair constr occurrences

let reference_with_occs = pair reference occurrences

let to_red_context = to_option (to_pair to_pattern to_occurrences)

let red_context = make_to_repr to_red_context

let rec to_intro_pattern v = match Value.to_block v with
| (0, [| b |]) -> IntroForthcoming (Value.to_bool b)
| (1, [| pat |]) -> IntroNaming (to_intro_pattern_naming pat)
| (2, [| act |]) -> IntroAction (to_intro_pattern_action act)
| _ -> assert false

and to_intro_pattern_naming = function
| ValBlk (0, [| id |]) -> IntroIdentifier (Value.to_ident id)
| ValBlk (1, [| id |]) -> IntroFresh (Value.to_ident id)
| ValInt 0 -> IntroAnonymous
| _ -> assert false

and to_intro_pattern_action = function
| ValInt 0 -> IntroWildcard
| ValBlk (0, [| op |]) -> IntroOrAndPattern (to_or_and_intro_pattern op)
| ValBlk (1, [| inj |]) ->
  let map ipat = to_intro_pattern ipat in
  IntroInjection (Value.to_list map inj)
| ValBlk (2, [| c; ipat |]) ->
  let c = Value.to_fun1 Value.of_unit Value.to_constr c in
  IntroApplyOn (c, to_intro_pattern ipat)
| ValBlk (3, [| b |]) -> IntroRewrite (Value.to_bool b)
| _ -> assert false

and to_or_and_intro_pattern v = match Value.to_block v with
| (0, [| ill |]) ->
  IntroOrPattern (Value.to_list to_intro_patterns ill)
| (1, [| il |]) ->
  IntroAndPattern (to_intro_patterns il)
| _ -> assert false

and to_intro_patterns il =
  Value.to_list to_intro_pattern il

let rec of_intro_pattern = function
  | IntroForthcoming b -> of_block (0, [|of_bool b|])
  | IntroNaming pat -> of_block (1, [|of_intro_pattern_naming pat|])
  | IntroAction act -> of_block (2, [|of_intro_pattern_action act|])

and of_intro_pattern_naming = function
  | IntroIdentifier id -> of_block (0, [|of_ident id|])
  | IntroFresh id -> of_block (1, [|of_ident id|])
  | IntroAnonymous -> of_int 0

and of_intro_pattern_action = function
  | IntroWildcard -> of_int 0
  | IntroOrAndPattern op -> of_block (0, [|of_or_and_intro_pattern op|])
  | IntroInjection inj -> of_block (1, [|of_list of_intro_pattern inj|])
  | IntroApplyOn (c, ipat) ->
    let c = repr_of (fun1 unit constr) c in
    of_block (2, [|c; of_intro_pattern ipat|])
  | IntroRewrite b -> of_block (3, [|of_bool b|])

and of_or_and_intro_pattern = function
  | IntroOrPattern ill -> of_block (0, [|of_list of_intro_patterns ill|])
  | IntroAndPattern il -> of_block (1, [|of_intro_patterns il|])

and of_intro_patterns il = of_list of_intro_pattern il

let intro_pattern = make_repr of_intro_pattern to_intro_pattern

let intro_patterns = make_repr of_intro_patterns to_intro_patterns

let to_destruction_arg v = match Value.to_block v with
| (0, [| c |]) ->
  let c = uthaw constr_with_bindings c in
  ElimOnConstr c
| (1, [| id |]) -> ElimOnIdent (Value.to_ident id)
| (2, [| n |]) -> ElimOnAnonHyp (Value.to_int n)
| _ -> assert false

let destruction_arg = make_to_repr to_destruction_arg

let to_induction_clause v = match Value.to_tuple v with
| [| arg; eqn; as_; in_ |] ->
  let arg = to_destruction_arg arg in
  let eqn = Value.to_option to_intro_pattern_naming eqn in
  let as_ = Value.to_option to_or_and_intro_pattern as_ in
  let in_ = Value.to_option to_clause in_ in
  (arg, eqn, as_, in_)
| _ ->
  assert false

let induction_clause = make_to_repr to_induction_clause

let to_assertion v = match Value.to_block v with
| (0, [| ipat; t; tac |]) ->
  let to_tac t = Value.to_fun1 Value.of_unit Value.to_unit t in
  let ipat = Value.to_option to_intro_pattern ipat in
  let t = Value.to_constr t in
  let tac = Value.to_option to_tac tac in
  AssertType (ipat, t, tac)
| (1, [| id; c |]) ->
  AssertValue (Value.to_ident id, Value.to_constr c)
| _ -> assert false

let assertion = make_to_repr to_assertion

let to_multi = function
| ValBlk (0, [| n |]) -> Precisely (Value.to_int n)
| ValBlk (1, [| n |]) -> UpTo (Value.to_int n)
| ValInt 0 -> RepeatStar
| ValInt 1 -> RepeatPlus
| _ -> assert false

let to_rewriting v = match Value.to_tuple v with
| [| orient; repeat; c |] ->
  let orient = Value.to_option Value.to_bool orient in
  let repeat = to_multi repeat in
  let c = uthaw constr_with_bindings c in
  (orient, repeat, c)
| _ -> assert false

let rewriting = make_to_repr to_rewriting

let to_debug v = match Value.to_int v with
| 0 -> Hints.Off
| 1 -> Hints.Info
| 2 -> Hints.Debug
| _ -> assert false

let debug = make_to_repr to_debug

let to_strategy v = match Value.to_int v with
| 0 -> Class_tactics.Bfs
| 1 -> Class_tactics.Dfs
| _ -> assert false

let strategy = make_to_repr to_strategy

let to_inversion_kind v = match Value.to_int v with
| 0 -> Inv.SimpleInversion
| 1 -> Inv.FullInversion
| 2 -> Inv.FullInversionClear
| _ -> assert false

let inversion_kind = make_to_repr to_inversion_kind

let to_move_location = function
| ValInt 0 -> Logic.MoveFirst
| ValInt 1 -> Logic.MoveLast
| ValBlk (0, [|id|]) -> Logic.MoveAfter (Value.to_ident id)
| ValBlk (1, [|id|]) -> Logic.MoveBefore (Value.to_ident id)
| _ -> assert false

let move_location = make_to_repr to_move_location

let to_generalize_arg v = match Value.to_tuple v with
| [| c; occs; na |] ->
  (Value.to_constr c, to_occurrences occs, to_name na)
| _ -> assert false

let generalize_arg = make_to_repr to_generalize_arg

(** Standard tactics sharing their implementation with Ltac1 *)

open Tac2externals

let define s =
  define { mltac_plugin = "rocq-runtime.plugins.ltac2"; mltac_tactic = s }

(** Tactics from Tacexpr *)

let () =
  define "tac_intros"
    (bool @-> intro_patterns @-> tac unit)
    Tac2tactics.intros_patterns

let () =
  define "tac_apply"
    (bool @-> bool @-> list (thunk constr_with_bindings) @->
      option (pair ident (option intro_pattern)) @-> tac unit)
    Tac2tactics.apply

let () =
  define "tac_elim"
    (bool @-> constr_with_bindings @-> option constr_with_bindings @-> tac unit)
    Tac2tactics.elim

let () =
  define "tac_case"
    (bool @-> constr_with_bindings @-> tac unit)
    Tac2tactics.general_case_analysis

let () =
  define "tac_generalize"
    (list generalize_arg @-> tac unit)
    Tac2tactics.generalize

let () =
  define "tac_assert"
    (assertion @-> tac unit)
    Tac2tactics.assert_

let tac_enough c tac ipat =
  let tac = Option.map (fun o -> Option.map (fun f -> thaw f) o) tac in
  Tac2tactics.forward false tac ipat c
let () =
  define "tac_enough"
    (constr @-> option (option (thunk unit)) @-> option intro_pattern @-> tac unit)
    tac_enough

let tac_pose na c = Tactics.letin_tac None na c None Locusops.nowhere
let () =
  define "tac_pose"
    (name @-> constr @-> tac unit)
    tac_pose

let tac_set ev p cl =
  Proofview.tclEVARMAP >>= fun sigma ->
  thaw p >>= fun (na, c) ->
  Tac2tactics.letin_pat_tac ev None na (Some sigma, c) cl
let () =
  define "tac_set"
    (bool @-> thunk (pair name constr) @-> clause @-> tac unit)
    tac_set

let tac_remember ev na c eqpat cl =
  let eqpat = Option.default (IntroNaming IntroAnonymous) eqpat in
  match eqpat with
  | IntroNaming eqpat ->
    Proofview.tclEVARMAP >>= fun sigma ->
    thaw c >>= fun c ->
    Tac2tactics.letin_pat_tac ev (Some (true, eqpat)) na (Some sigma, c) cl
  | _ ->
    Tacticals.tclZEROMSG (Pp.str "Invalid pattern for remember")
let () =
  define "tac_remember"
    (bool @-> name @-> thunk constr @-> option intro_pattern @-> clause @-> tac unit)
    tac_remember

let () =
  define "tac_destruct"
    (bool @-> list induction_clause @-> option constr_with_bindings @-> tac unit)
    (Tac2tactics.induction_destruct false)

let () =
  define "tac_induction"
    (bool @-> list induction_clause @-> option constr_with_bindings @-> tac unit)
    (Tac2tactics.induction_destruct true)

let () = define "tac_exfalso" (unit @-> tac unit) @@ fun () ->
  Tactics.exfalso

(** Reductions *)

let () =
  define "reduce_in"
    (reduction @-> clause @-> tac unit)
    Tac2tactics.reduce_in

let () =
  define "reduce_constr"
    (reduction @-> constr @-> tac constr)
    Tac2tactics.reduce_constr

let () = define "red"
    (ret reduction)
    Red

let () = define "hnf"
    (ret reduction)
    Hnf

let () =
  define "simpl"
    (red_flags @-> red_context @-> tac reduction)
    Tac2tactics.simpl

let () =
  define "cbv"
    (red_flags @-> tac reduction)
    Tac2tactics.cbv

let () =
  define "cbn"
    (red_flags @-> tac reduction)
    Tac2tactics.cbn

let () =
  define "lazy"
    (red_flags @-> tac reduction)
    Tac2tactics.lazy_

let () =
  define "unfold"
    (list reference_with_occs @-> tac reduction)
    Tac2tactics.unfold

let () =
  define "fold"
    (list constr @-> ret reduction)
    (fun cs -> Fold cs)

let () =
  define "pattern"
    (list constr_with_occs @-> ret reduction)
    Tac2tactics.pattern

let () =
  define "vm"
    (red_context @-> ret reduction)
    Tac2tactics.vm

let () =
  define "native"
    (red_context @-> ret reduction)
    Tac2tactics.native


(** Rewritings *)

let () =
  define "tac_change"
    (option pattern @-> fun1 (array constr) constr @-> clause @-> tac unit)
    Tac2tactics.change

let () =
  define "tac_rewrite"
    (bool @-> list rewriting @-> clause @-> option (thunk unit) @-> tac unit)
    Tac2tactics.rewrite

let () =
  define "tac_setoid_rewrite"
    (bool @-> uthaw constr_with_bindings @--> occurrences @-> option ident @-> tac unit)
    Tac2tactics.setoid_rewrite

let () =
  define "tac_rewrite_strat"
    (rewstrategy @-> option ident @-> tac unit)
    Tac2tactics.rewrite_strat

let () =
  define "rewstrat_id"
    (ret rewstrategy)
    Rewrite.Strategies.id

let () =
  define "rewstrat_fail"
    (ret rewstrategy)
    Rewrite.Strategies.fail

let () =
  define "rewstrat_refl"
    (ret rewstrategy)
    Rewrite.Strategies.refl

let () =
  define "rewstrat_progress"
    (rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.progress

let () =
  define "rewstrat_seq"
    (rewstrategy @-> rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.seq

let () =
  define "rewstrat_seqs"
    (list rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.seqs

let () =
  define "rewstrat_choice"
    (rewstrategy @-> rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.choice

let () =
  define "rewstrat_choices"
    (list rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.choices

let () =
  define "rewstrat_try"
    (rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.try_

let () =
  define "rewstrat_fix"
    (closure @-> tac rewstrategy)
    Tac2tactics.RewriteStrats.fix

let () =
  define "rewstrat_any"
    (rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.any

let () =
  define "rewstrat_repeat"
    (rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.repeat

let () =
  define "rewstrat_one_subterm"
    (rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.one_subterm

let () =
  define "rewstrat_all_subterms"
    (rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.all_subterms

let () =
  define "rewstrat_bottomup"
    (rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.bottomup

let () =
  define "rewstrat_topdown"
    (rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.topdown

let () =
  define "rewstrat_innermost"
    (rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.innermost

let () =
  define "rewstrat_outermost"
    (rewstrategy @-> ret rewstrategy)
    Rewrite.Strategies.outermost

let () =
  define "rewstrat_hints"
    (ident @-> ret rewstrategy)
    Tac2tactics.RewriteStrats.hints

let () =
  define "rewstrat_old_hints"
    (ident @-> ret rewstrategy)
    Tac2tactics.RewriteStrats.old_hints

let () =
  define "rewstrat_one_lemma"
    (preterm @-> bool @-> ret rewstrategy)
    Tac2tactics.RewriteStrats.one_lemma

let () =
  define "rewstrat_lemmas"
    (list preterm @-> ret rewstrategy)
    Tac2tactics.RewriteStrats.lemmas

let () =
  define "rewstrat_fold"
    (constr @-> ret rewstrategy)
    Rewrite.Strategies.fold

let () =
  define "rewstrat_eval"
    (reduction @-> ret rewstrategy)
    Rewrite.Strategies.reduce


let () =
  define "tac_inversion"
    (inversion_kind @-> destruction_arg @-> option intro_pattern @->
      option (list ident) @-> tac unit)
    Tac2tactics.inversion

(** Tactics from coretactics *)

let () =
  define "tac_reflexivity" (unit @-> tac unit) (fun _ -> Tactics.intros_reflexivity)

let () =
  define "tac_move" (ident @-> move_location @-> tac unit) Tactics.move_hyp

let tac_intro id mv =
  let mv = Option.default Logic.MoveLast mv in
  Tactics.intro_move id mv
let () =
  define "tac_intro" (option ident @-> option move_location @-> tac unit) tac_intro

(*

TACTIC EXTEND exact
  [ "exact" casted_constr(c) ] -> [ Tactics.exact_no_check c ]
END

*)

let () =
  define "tac_assumption" (unit @-> tac unit) (fun _ -> Tactics.assumption)

let () =
  define "tac_eassumption" (unit @-> tac unit) (fun _ -> Eauto.e_assumption)

let () =
  define "tac_transitivity" (constr @-> tac unit)
    (fun c -> Tactics.intros_transitivity (Some c))

let () =
  define "tac_etransitivity" (unit @-> tac unit)
    (fun _ -> Tactics.intros_transitivity None)

let () =
  define "tac_cut" (constr @-> tac unit) Tactics.cut

let () =
  define "tac_left" (bool @-> bindings @-> tac unit) Tac2tactics.left_with_bindings

let () =
  define "tac_right" (bool @-> bindings @-> tac unit) Tac2tactics.right_with_bindings

let () =
  define "tac_introsuntil" (qhyp @-> tac unit) Tactics.intros_until

let () =
  define "tac_exactnocheck" (constr @-> tac unit) Tactics.exact_no_check

let () =
  define "tac_vmcastnocheck" (constr @-> tac unit) Tactics.vm_cast_no_check

let () =
  define "tac_nativecastnocheck" (constr @-> tac unit) Tactics.native_cast_no_check

let () =
  define "tac_constructor" (bool @-> tac unit) (fun ev -> Tactics.any_constructor ev None)

let () =
  define "tac_constructorn" (bool @-> int @-> bindings @-> tac unit)
    (fun ev n bnd -> Tac2tactics.constructor_tac ev None n bnd)

let () =
  define "tac_specialize"
    (constr_with_bindings @-> option intro_pattern @-> tac unit)
    Tac2tactics.specialize

let () =
  define "tac_symmetry" (clause @-> tac unit) Tac2tactics.symmetry

let () =
  define "tac_split" (bool @-> bindings @-> tac unit) Tac2tactics.split_with_bindings

let () =
  define "tac_rename" (list (pair ident ident) @-> tac unit) Tactics.rename_hyp

let () =
  define "tac_revert" (list ident @-> tac unit) Generalize.revert

let () =
  define "tac_admit" (unit @-> tac unit) (fun _ -> Proofview.give_up)

let () =
  define "tac_fix" (ident @-> int @-> tac unit) Tactics.fix

let () =
  define "tac_cofix" (ident @-> tac unit) Tactics.cofix

let () =
  define "tac_clear" (list ident @-> tac unit) Tactics.clear

let () =
  define "tac_keep" (list ident @-> tac unit) Tactics.keep

let () =
  define "tac_clearbody" (list ident @-> tac unit) Tactics.clear_body

(** Tactics from extratactics *)

let () =
  define "tac_discriminate"
    (bool @-> option destruction_arg @-> tac unit)
    Tac2tactics.discriminate

let () =
  define "tac_injection"
    (bool @-> option intro_patterns @-> option destruction_arg @-> tac unit)
    Tac2tactics.injection

let () =
  define "tac_absurd" (constr @-> tac unit) Contradiction.absurd

let () =
  define "tac_contradiction"
    (option constr_with_bindings @-> tac unit)
    Tac2tactics.contradiction

let () =
  define "tac_autorewrite"
    (bool @-> option (thunk unit) @-> list ident @-> clause @-> tac unit)
    (fun all by ids cl -> Tac2tactics.autorewrite ~all by ids cl)

let () =
  define "tac_subst" (list ident @-> tac unit) Equality.subst

let () =
  define "tac_substall"
    (unit @-> tac unit)
    (fun _ -> return () >>= fun () -> Equality.subst_all ())

(** Auto *)

let () =
  define "tac_trivial"
    (debug @-> list reference @-> option (list ident) @-> tac unit)
    Tac2tactics.trivial

let () =
  define "tac_eauto"
    (debug @-> option int @-> list reference @-> option (list ident) @-> tac unit)
    Tac2tactics.eauto

let () =
  define "tac_auto"
    (debug @-> option int @-> list reference @-> option (list ident) @-> tac unit)
    Tac2tactics.auto

let () =
  define "tac_typeclasses_eauto"
    (option strategy @-> option int @-> option (list ident) @-> tac unit)
    Tac2tactics.typeclasses_eauto

let () =
  define "tac_resolve_tc" (constr @-> tac unit) Class_tactics.resolve_tc

let () =
  define "tac_unify" (constr @-> constr @-> tac unit) Tac2tactics.unify

(** Tactics for [Ltac2/TransparentState.v]. *)

let () =
  define "current_transparent_state"
    (unit @-> tac transparent_state)
    Tac2tactics.current_transparent_state

let () =
  define "full_transparent_state" (ret transparent_state) TransparentState.full

let () =
  define "empty_transparent_state" (ret transparent_state) TransparentState.empty

(** Tactics around Evarconv unification (in [Ltac2/Unification.v]). *)

let to_conv_pb v = match Tac2ffi.to_int v with
| 0 -> Conversion.CONV
| 1 -> Conversion.CUMUL
| _ -> assert false

let () =
  define "infer_conv" (to_conv_pb @--> transparent_state @-> constr @-> constr @-> tac bool) @@ fun pb ts c1 c2 ->
  Tac2core.pf_apply @@ fun env sigma ->
  match Reductionops.infer_conv ~pb ~ts env sigma c1 c2 with
  | Some sigma -> Proofview.Unsafe.tclEVARS sigma <*> return true
  | None -> return false

let () =
  define "evarconv_unify"
    (transparent_state @-> constr @-> constr @-> tac unit)
    Tac2tactics.evarconv_unify

let () =
  define "congruence"
  (option int @-> option (list constr) @-> tac unit)
  Tac2tactics.congruence

let () =
  define "simple_congruence"
  (option int @-> option (list constr) @-> tac unit)
  Tac2tactics.simple_congruence

let () = define "f_equal" (unit @-> tac unit) @@ fun () ->
    Tac2tactics.f_equal