package rocq-runtime

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file hashcons.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
(************************************************************************)
(*         *      The Rocq Prover / The Rocq Development Team           *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* Hash consing of datastructures *)

type 'a f = 'a -> int * 'a

(* [t] is the type of object to hash-cons
 * [hashcons x] is a function that hash-cons the sub-structures of x
 * [eq] is a comparison function. It is allowed to use physical equality
 *   on the sub-terms hash-consed by the hashcons function.
 *)

module type HashconsedType =
  sig
    type t
    val hashcons : t f
    val eq : t -> t -> bool
  end

module type HashconsedRecType = sig
  type t

  val hashcons : t f -> t f

  val eq : t -> t -> bool

end

(** The output is a function [generate] such that [generate args] creates a
    hash-table of the hash-consed objects, together with [hcons], a function
    taking a table and an object, and hashcons it. For simplicity of use, we use
    the wrapper functions defined below. *)

module type S =
  sig
    type t
    type table
    val generate : unit -> table
    val hcons : table -> t f
    val stats : table -> Hashset.statistics
  end

module Make (X : HashconsedType) : (S with type t = X.t) =
  struct
    type t = X.t

    (* We create the type of hashtables for t, with our comparison fun.
     * An invariant is that the table never contains two entries equals
     * w.r.t (=), although the equality on keys is X.eq. This is
     * granted since we hcons the subterms before looking up in the table.
     *)
    module Htbl = Hashset.Make(X)

    type table = Htbl.t

    let generate () =
      let tab = Htbl.create 97 in
      tab

    let hcons tab x =
      let h, y = X.hashcons x in
      h, Htbl.repr h y tab

    let stats = Htbl.stats

  end

module MakeRec (X : HashconsedRecType) : (S with type t = X.t) =
struct
  type t = X.t

  module Htbl = Hashset.Make(X)

  type table = Htbl.t

  let generate () =
    let tab = Htbl.create 97 in
    tab

  let rec hcons tab x =
    let h, y = X.hashcons (hcons tab) x in
    h, Htbl.repr h y tab

  let stats = Htbl.stats

end

(* A few useful wrappers:
 * takes as argument the function [generate] above and build a function of type
 * u -> t -> t that creates a fresh table each time it is applied to the
 * sub-hcons functions. *)

(* For non-recursive types it is quite easy. *)
let simple_hcons h f u =
  let table = h u in
  fun x -> f table x

(* Basic hashcons modules for string and obj. Integers do not need be
   hashconsed.  *)

module type HashedType = sig
  type t
  val hcons : t f
end

(* list *)
module Hlist (D:HashedType) : S with type t = D.t list =
  struct
    module X =
    struct
      type t = D.t list
      let eq l1 l2 =
        l1 == l2 ||
          match l1, l2 with
          | [], [] -> true
          | x1::l1, x2::l2 -> x1==x2 && l1==l2
          | _ -> false
    end

    type t = X.t

    module Htbl = Hashset.Make(X)

    type table = Htbl.t

    let generate () =
      let tab = Htbl.create 97 in
      tab

    let rec hcons tab l =
      let h, l = match l with
      | [] -> 0, []
      | x :: l ->
        let hx, x = D.hcons x in
        let h, l = hcons tab l in
        let h = Hashset.Combine.combine hx h in
        h, x :: l
      in
      h, Htbl.repr h l tab

    let stats = Htbl.stats

  end

let hashcons_array hcons a =
  CArray.Smart.fold_left_map (fun acc x ->
      let hx, x = hcons x in
      Hashset.Combine.combine acc hx, x)
    0
    a