package rocq-runtime

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file tac2ffi.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
(************************************************************************)
(*         *      The Rocq Prover / The Rocq Development Team           *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Tac2dyn
open Tac2val

type 'a repr = {
  r_of : 'a -> valexpr;
  r_to : valexpr -> 'a;
}

let repr_of r x = r.r_of x
let repr_to r x = r.r_to x

let make_repr r_of r_to = { r_of; r_to; }

let map_repr f g r = {
  r_of = (fun x -> r.r_of (g x));
  r_to = (fun x -> f (r.r_to x));
}

type ind_data = (Names.Ind.t * Declarations.mutual_inductive_body)
type binder = (Names.Name.t EConstr.binder_annot * EConstr.types)

(** Dynamic tags *)

let val_exn = Val.create "exn"
let val_exninfo = Val.create "exninfo"
let val_constr = Val.create "constr"
let val_ident = Val.create "ident"
let val_pattern = Val.create "pattern"
let val_preterm = Val.create "preterm"
let val_matching_context = Val.create "matching_context"
let val_pp = Val.create "pp"
let val_evar = Val.create "evar"
let val_sort = Val.create "sort"
let val_cast = Val.create "cast"
let val_inductive = Val.create "inductive"
let val_constant = Val.create "constant"
let val_constructor = Val.create "constructor"
let val_projection = Val.create "projection"
let val_qvar = Val.create "qvar"
let val_case = Val.create "case"
let val_binder = Val.create "binder"
let val_instance = Val.create "instance"
let val_free = Val.create "free"
let val_uint63 = Val.create "uint63"
let val_float = Val.create "float"
let val_pstring = Val.create "pstring"
let val_ind_data : (Names.Ind.t * Declarations.mutual_inductive_body) Val.tag = Val.create "ind_data"
let val_transparent_state : TransparentState.t Val.tag = Val.create "transparent_state"
let val_pretype_flags = Val.create "pretype_flags"
let val_expected_type = Val.create "expected_type"
let val_reduction = Val.create "reduction"
let val_rewstrategy = Val.create "rewstrategy"

let extract_val (type a) (type b) (tag : a Val.tag) (tag' : b Val.tag) (v : b) : a =
match Val.eq tag tag' with
| None -> assert false
| Some Refl -> v

(** Exception *)

exception LtacError of Names.KerName.t * valexpr array

(** Conversion functions *)

let valexpr = {
  r_of = (fun obj -> obj);
  r_to = (fun obj -> obj);
}

let of_unit () = ValInt 0

let to_unit = function
| ValInt 0 -> ()
| _ -> assert false

let unit = {
  r_of = of_unit;
  r_to = to_unit;
}

let of_int n = ValInt n
let to_int = function
| ValInt n -> n
| _ -> assert false

let int = {
  r_of = of_int;
  r_to = to_int;
}

let of_bool b = if b then ValInt 0 else ValInt 1

let to_bool = function
| ValInt 0 -> true
| ValInt 1 -> false
| _ -> assert false

let bool = {
  r_of = of_bool;
  r_to = to_bool;
}

let of_char n = ValInt (Char.code n)
let to_char = function
| ValInt n -> Char.chr n
| _ -> assert false

let char = {
  r_of = of_char;
  r_to = to_char;
}

let of_bytes s = ValStr s
let to_bytes = function
| ValStr s -> s
| _ -> assert false

let bytes = {
  r_of = of_bytes;
  r_to = to_bytes;
}

let of_string s = of_bytes (Bytes.of_string s)
let to_string s = Bytes.to_string (to_bytes s)
let string = {
  r_of = of_string;
  r_to = to_string;
}

let rec of_list f = function
| [] -> ValInt 0
| x :: l -> ValBlk (0, [| f x; of_list f l |])

let rec to_list f = function
| ValInt 0 -> []
| ValBlk (0, [|v; vl|]) -> f v :: to_list f vl
| _ -> assert false

let list r = {
  r_of = (fun l -> of_list r.r_of l);
  r_to = (fun l -> to_list r.r_to l);
}

let of_closure cls = ValCls cls

let to_closure = Tac2val.to_closure

let closure = {
  r_of = of_closure;
  r_to = to_closure;
}

type ('a, 'b) fun1 = 'a -> 'b Proofview.tactic

let of_fun1 to_arg of_res f =
  of_closure (mk_closure arity_one (fun x ->
      Proofview.Monad.map of_res @@
      f (to_arg x)))

let to_fun1 of_arg to_res f x =
  Proofview.Monad.map to_res @@
  apply (to_closure f) [of_arg x]

let fun1 arg res = {
  r_of = of_fun1 arg.r_to res.r_of;
  r_to = to_fun1 arg.r_of res.r_to;
}

let thunk r = fun1 unit r

type ('a, 'b, 'c) fun2 = 'a -> 'b -> 'c Proofview.tactic

let of_fun2 to_arg1 to_arg2 of_res f =
  of_closure (mk_closure (arity_suc arity_one) (fun x y ->
      Proofview.Monad.map of_res @@
      f (to_arg1 x) (to_arg2 y)))

let to_fun2 of_arg1 of_arg2 to_res f x y =
  Proofview.Monad.map to_res @@
  apply (to_closure f) [of_arg1 x; of_arg2 y]

let fun2 arg1 arg2 res = {
  r_of = of_fun2 arg1.r_to arg2.r_to res.r_of;
  r_to = to_fun2 arg1.r_of arg2.r_of res.r_to;
}

let of_ext tag c =
  ValExt (tag, c)

let to_ext tag = function
| ValExt (tag', e) -> extract_val tag tag' e
| _ -> assert false

let repr_ext tag = {
  r_of = (fun e -> of_ext tag e);
  r_to = (fun e -> to_ext tag e);
}

let of_constr c = of_ext val_constr c
let to_constr c = to_ext val_constr c
let constr = repr_ext val_constr

let of_matching_context c = of_ext val_matching_context c
let to_matching_context c = to_ext val_matching_context c
let matching_context = repr_ext val_matching_context

let of_preterm c = of_ext val_preterm c
let to_preterm c = to_ext val_preterm c
let preterm = repr_ext val_preterm

let of_cast c = of_ext val_cast c
let to_cast c = to_ext val_cast c
let cast = repr_ext val_cast

let of_ident c = of_ext val_ident c
let to_ident c = to_ext val_ident c
let ident = repr_ext val_ident

let of_pattern c = of_ext val_pattern c
let to_pattern c = to_ext val_pattern c
let pattern = repr_ext val_pattern

let of_evar ev = of_ext val_evar ev
let to_evar ev = to_ext val_evar ev
let evar = repr_ext val_evar

let of_sort ev = of_ext val_sort ev
let to_sort ev = to_ext val_sort ev
let sort = repr_ext val_sort

let of_reduction ev = of_ext val_reduction ev
let to_reduction ev = to_ext val_reduction ev
let reduction = repr_ext val_reduction

let of_rewstrategy ev = of_ext val_rewstrategy ev
let to_rewstrategy ev = to_ext val_rewstrategy ev
let rewstrategy = repr_ext val_rewstrategy

let internal_err =
  let open Names in
  let rocq_prefix =
    MPfile (DirPath.make (List.map Id.of_string ["Init"; "Ltac2"]))
  in
  KerName.make rocq_prefix (Label.of_id (Id.of_string "Internal"))

let of_exninfo = of_ext val_exninfo
let to_exninfo = to_ext val_exninfo

let exninfo = {
  r_of = of_exninfo;
  r_to = to_exninfo;
}

(* Invariant: no [LtacError] should be put into a value with tag [val_exn]. *)
let of_err e = of_ext val_exn e
let to_err e = to_ext val_exn e
let err = repr_ext val_exn

(** FIXME: handle backtrace in Ltac2 exceptions *)
let of_exn c = match fst c with
| LtacError (kn, c) -> ValOpn (kn, c)
| _ -> ValOpn (internal_err, [|of_err c|])

let to_exn c = match c with
| ValOpn (kn, c) ->
  if Names.KerName.equal kn internal_err then
    to_err c.(0)
  else
    (LtacError (kn, c), Exninfo.null)
| _ -> assert false

let exn = {
  r_of = of_exn;
  r_to = to_exn;
}

let of_result of_ok = function
  | Ok v -> ValBlk (0, [|of_ok v|])
  | Error e -> ValBlk (1, [|of_exn e|])

let to_result to_ok = function
  | ValBlk (0, [|v|]) -> Ok (to_ok v)
  | ValBlk (1, [|e|]) -> Error (to_exn e)
  | _ -> assert false

let result ok = {
  r_of = of_result ok.r_of;
  r_to = to_result ok.r_to;
}

let of_option f = function
| None -> ValInt 0
| Some c -> ValBlk (0, [|f c|])

let to_option f = function
| ValInt 0 -> None
| ValBlk (0, [|c|]) -> Some (f c)
| _ -> assert false

let option r = {
  r_of = (fun l -> of_option r.r_of l);
  r_to = (fun l -> to_option r.r_to l);
}

let of_pp c = of_ext val_pp c
let to_pp c = to_ext val_pp c
let pp = repr_ext val_pp

let of_tuple cl = ValBlk (0, cl)
let to_tuple = function
| ValBlk (0, cl) -> cl
| _ -> assert false

let of_pair f g (x, y) = ValBlk (0, [|f x; g y|])
let to_pair f g = function
| ValBlk (0, [|x; y|]) -> (f x, g y)
| _ -> assert false
let pair r0 r1 = {
  r_of = (fun p -> of_pair r0.r_of r1.r_of p);
  r_to = (fun p -> to_pair r0.r_to r1.r_to p);
}

let of_triple f g h (x, y, z) = ValBlk (0, [|f x; g y; h z|])
let to_triple f g h = function
| ValBlk (0, [|x; y; z|]) -> (f x, g y, h z)
| _ -> assert false
let triple r0 r1 r2 = {
  r_of = (fun p -> of_triple r0.r_of r1.r_of r2.r_of p);
  r_to = (fun p -> to_triple r0.r_to r1.r_to r2.r_to p);
}

let of_array f vl = ValBlk (0, Array.map f vl)
let to_array f = function
| ValBlk (0, vl) -> Array.map f vl
| _ -> assert false
let array r = {
  r_of = (fun l -> of_array r.r_of l);
  r_to = (fun l -> to_array r.r_to l);
}

let of_block (n, args) = ValBlk (n, args)
let to_block = function
| ValBlk (n, args) -> (n, args)
| _ -> assert false

let block = {
  r_of = of_block;
  r_to = to_block;
}

let of_open (kn, args) = ValOpn (kn, args)

let to_open = function
| ValOpn (kn, args) -> (kn, args)
| _ -> assert false

let open_ = {
  r_of = of_open;
  r_to = to_open;
}

let of_free n = of_ext val_free n
let to_free x = to_ext val_free x

let free = {
  r_of = of_free;
  r_to = to_free;
}

let of_uint63 n = of_ext val_uint63 n
let to_uint63 x = to_ext val_uint63 x

let uint63 = {
  r_of = of_uint63;
  r_to = to_uint63;
}

let of_float f = of_ext val_float f
let to_float x = to_ext val_float x

let float = {
  r_of = of_float;
  r_to = to_float;
}

let of_pstring s = of_ext val_pstring s
let to_pstring x = to_ext val_pstring x

let pstring = {
  r_of = of_pstring;
  r_to = to_pstring;
}

let of_transparent_state c = of_ext val_transparent_state c
let to_transparent_state c = to_ext val_transparent_state c
let transparent_state = repr_ext val_transparent_state

let of_pretype_flags c = of_ext val_pretype_flags c
let to_pretype_flags c = to_ext val_pretype_flags c
let pretype_flags = repr_ext val_pretype_flags

let of_expected_type c = of_ext val_expected_type c
let to_expected_type c = to_ext val_expected_type c
let expected_type = repr_ext val_expected_type

let of_ind_data c = of_ext val_ind_data c
let to_ind_data c = to_ext val_ind_data c
let ind_data = repr_ext val_ind_data

let of_inductive c = of_ext val_inductive c
let to_inductive c = to_ext val_inductive c
let inductive = repr_ext val_inductive

let of_constant c = of_ext val_constant c
let to_constant c = to_ext val_constant c
let constant = repr_ext val_constant

let of_constructor c = of_ext val_constructor c
let to_constructor c = to_ext val_constructor c
let constructor = repr_ext val_constructor

let of_projection c = of_ext val_projection c
let to_projection c = to_ext val_projection c
let projection = repr_ext val_projection

let of_qvar c = of_ext val_qvar c
let to_qvar c = to_ext val_qvar c
let qvar = repr_ext val_qvar

let of_case c = of_ext val_case c
let to_case c = to_ext val_case c
let case = repr_ext val_case

let of_binder c = of_ext val_binder c
let to_binder c = to_ext val_binder c
let binder = repr_ext val_binder

let of_instance c = of_ext val_instance c
let to_instance c = to_ext val_instance c
let instance = repr_ext val_instance

let of_reference = let open Names.GlobRef in function
| VarRef id -> ValBlk (0, [| of_ident id |])
| ConstRef cst -> ValBlk (1, [| of_constant cst |])
| IndRef ind -> ValBlk (2, [| of_inductive ind |])
| ConstructRef cstr -> ValBlk (3, [| of_constructor cstr |])

let to_reference = let open Names.GlobRef in function
| ValBlk (0, [| id |]) -> VarRef (to_ident id)
| ValBlk (1, [| cst |]) -> ConstRef (to_constant cst)
| ValBlk (2, [| ind |]) -> IndRef (to_inductive ind)
| ValBlk (3, [| cstr |]) -> ConstructRef (to_constructor cstr)
| _ -> assert false

let reference = {
  r_of = of_reference;
  r_to = to_reference;
}