package jasmin

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file toEC.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
open Utils
open Wsize
open Prog
open PrintCommon
module E = Expr

type amodel =
  | ArrayOld
  | WArray
  | BArray

let ws2bytes ws = (int_of_ws ws) / 8

module Scmp = struct
  type t = string
  let compare = compare
end

module Ss = Set.Make(Scmp)
module Ms = Map.Make(Scmp)

(* ------------------------------------------------------------------- *)
(* Array theories in eclib *)

type arraywords = {
  sizew: int; (* in bytes *)
  sizea: int;
}

type subarray = {
  sizes: int;
  sizeb: int;
}

type subarraydirect = {
  sizew: int; (* in bytes *)
  sizes: int;
  sizeb: int;
}

type subarraycast = {
  sizews: int; (* in bytes *)
  sizewb: int; (* in bytes *)
  sizes: int;
  sizeb: int;
}

type arrayaccesscast = {
  sizews: int; (* in bytes *)
  sizewb: int; (* in bytes *)
  sizeb: int;
}

type array_theory =
  | Array of int
  | WArray of int
  | ArrayWords of arraywords
  | SubArray of subarray
  | SubArrayDirect of subarraydirect
  | SubArrayCast of subarraycast
  | ArrayAccessCast of arrayaccesscast
  | ByteArray of int
  | SubByteArray of subarray

module ATcmp = struct
  type t = array_theory
  let compare = compare
end

module Sarraytheory = Set.Make(ATcmp)

(* ------------------------------------------------------------------- *)
(* Easycrypt keywords (and extraction "pseudo-keywords") *)

(* FIXME: generate this list automatically *)
(* Adapted from EasyCrypt source file src/ecLexer.mll *)
let ec_keyword =
 [ "admit"
 ; "admitted"

 ; "forall"
 ; "exists"
 ; "fun"
 ; "glob"
 ; "let"
 ; "in"
 ; "for"
 ; "var"
 ; "proc"
 ; "if"
 ; "is"
 ; "match"
 ; "then"
 ; "else"
 ; "elif"
 ; "match"
 ; "for"
 ; "while"
 ; "assert"
 ; "return"
 ; "res"
 ; "equiv"
 ; "hoare"
 ; "ehoare"
 ; "phoare"
 ; "islossless"
 ; "async"

 ; "try"
 ; "first"
 ; "last"
 ; "do"
 ; "expect"

 (* Lambda tactics *)
 ; "beta"
 ; "iota"
 ; "zeta"
 ; "eta"
 ; "logic"
 ; "delta"
 ; "simplify"
 ; "cbv"
 ; "congr"

 (* Logic tactics *)
 ; "change"
 ; "split"
 ; "left"
 ; "right"
 ; "case"

 ; "pose"
 ; "gen"
 ; "have"
 ; "suff"
 ; "elim"
 ; "exlim"
 ; "ecall"
 ; "clear"
 ; "wlog"

 (* Auto tactics *)
 ; "apply"
 ; "rewrite"
 ; "rwnormal"
 ; "subst"
 ; "progress"
 ; "trivial"
 ; "auto"

 (* Other tactics *)
 ; "idtac"
 ; "move"
 ; "modpath"
 ; "field"
 ; "fieldeq"
 ; "ring"
 ; "ringeq"
 ; "algebra"

 ; "exact"
 ; "assumption"
 ; "smt"
 ; "coq"
 ; "check"
 ; "edit"
 ; "fix"
 ; "by"
 ; "reflexivity"
 ; "done"
 ; "solve"

 (* PHL: tactics *)
 ; "replace"
 ; "transitivity"
 ; "symmetry"
 ; "seq"
 ; "wp"
 ; "sp"
 ; "sim"
 ; "skip"
 ; "call"
 ; "rcondt"
 ; "rcondf"
 ; "swap"
 ; "cfold"
 ; "rnd"
 ; "rndsem"
 ; "pr_bounded"
 ; "bypr"
 ; "byphoare"
 ; "byehoare"
 ; "byequiv"
 ; "byupto"
 ; "fel"

 ; "conseq"
 ; "exfalso"
 ; "inline"
 ; "outline"
 ; "interleave"
 ; "alias"
 ; "weakmem"
 ; "fission"
 ; "fusion"
 ; "unroll"
 ; "splitwhile"
 ; "kill"
 ; "eager"

 ; "axiom"
 ; "axiomatized"
 ; "lemma"
 ; "realize"
 ; "proof"
 ; "qed"
 ; "abort"
 ; "goal"
 ; "end"
 ; "from"
 ; "import"
 ; "export"
 ; "include"
 ; "local"
 ; "global"
 ; "declare"
 ; "hint"
 ; "module"
 ; "of"
 ; "const"
 ; "op"
 ; "pred"
 ; "inductive"
 ; "notation"
 ; "abbrev"
 ; "require"
 ; "theory"
 ; "abstract"
 ; "section"
 ; "subtype"
 ; "type"
 ; "class"
 ; "instance"
 ; "print"
 ; "search"
 ; "locate"
 ; "as"
 ; "Pr"
 ; "clone"
 ; "with"
 ; "rename"
 ; "prover"
 ; "timeout"
 ; "why3"
 ; "dump"
 ; "remove"
 ; "exit"

 ; "fail"
 ; "time"
 ; "undo"
 ; "debug"
 ; "pragma"

 ; "Top"
 ; "Self" ]

let syscall_mod_arg = "SC"
let syscall_mod_sig = "Syscall_t"
let syscall_mod     = "Syscall"
let internal_keyword =
  [ "safe"; "leakages"; syscall_mod_arg; syscall_mod_sig; syscall_mod ]

let keywords =
  Ss.union (Ss.of_list ec_keyword) (Ss.of_list internal_keyword)

(* ------------------------------------------------------------------- *)
(* Easycrypt very simplified (and incomplete) AST. *)
type ec_op2 =
    | ArrayGet
    | Plus
    | Infix of string

type ec_op3 =
    | Ternary
    | If
    | InORange

type ec_ident = string list

type ec_expr =
    | Econst of Z.t (* int. literal *)
    | Ebool of bool (* bool literal *)
    | Eident of ec_ident (* variable *)
    | Eapp of ec_expr * ec_expr list (* op. application *)
    | Efun1 of string * ec_expr (* fun s => expr *)
    | Eop2 of ec_op2 * ec_expr * ec_expr (* binary operator *)
    | Eop3 of ec_op3 * ec_expr * ec_expr * ec_expr (* ternary operator *)
    | Elist of ec_expr list (* list litteral *)
    | Etuple of ec_expr list (* tuple litteral *)

type ec_lvalue =
    | LvIdent of ec_ident
    | LvArrItem of ec_ident * ec_expr

type ec_lvalues = ec_lvalue list

type ec_instr =
    | ESasgn of ec_lvalues * ec_expr
    | EScall of ec_lvalues * ec_ident * ec_expr list
    | ESsample of ec_lvalues * ec_expr
    | ESif of ec_expr * ec_stmt * ec_stmt
    | ESwhile of ec_expr * ec_stmt
    | ESreturn of ec_expr
    | EScomment of string (* comment line *)

and ec_stmt = ec_instr list

type ec_ty = string

type ec_var = string * ec_ty

type ec_fun_decl = {
    fname: string;
    args: (string * ec_ty) list;
    rtys: ec_ty list;
}
type ec_fun = {
    decl: ec_fun_decl;
    locals: (string * ec_ty) list;
    stmt: ec_stmt;
}

type ec_modty = string

type ec_module_type = {
    name: ec_modty;
    funs: ec_fun_decl list;
}

type ec_module = {
    name: string;
    params: (string * ec_modty) list;
    ty: ec_modty option;
    vars: (string * string) list;
    funs: ec_fun list;
}

type ec_item =
    | IrequireImport of string list
    | Iimport of string list
    | IfromImport of string * (string list)
    | IfromRequireImport of string * (string list)
    | Iabbrev of string * ec_expr
    | ImoduleType of ec_module_type
    | Imodule of ec_module

type ec_prog = ec_item list


(* ------------------------------------------------------------------- *)
(* env: state of extraction *)

module type EnvT = sig
  type t
  val vars: t -> string Mv.t
  val pd: t -> Wsize.wsize
  val arch: t -> architecture
  val randombytes: t -> int list
  val set_fun: t -> ('a, 'b) func -> t
  val add_Array: t -> int -> unit
  val add_WArray: t -> int -> unit
  val add_ArrayWords: t -> int -> int -> unit
  val add_BArray: t -> int -> unit
  val add_SBArray: t -> subarray -> unit
  val add_SubArray: t -> int -> int -> unit
  val add_SubArrayDirect: t -> int -> int -> int -> unit
  val add_SubArrayCast: t -> int -> int -> int -> int -> unit
  val add_ArrayAccessCast: t -> int -> int -> int -> unit
  val add_randombytes: t -> int -> unit
  val add_ty: t -> int gty -> unit
  val add_jarray: t -> Wsize.wsize -> int -> unit
  val empty: architecture -> Wsize.wsize -> Sarraytheory.t ref -> t
  val create_name: t -> string -> string
  val array_theories: t -> Sarraytheory.t
  val get_funtype: t -> funname -> (ty list * ty list)
  val get_funname: t -> funname -> string
  val create_aux: t -> string -> ec_ty -> string
  val reuse_aux: t -> string -> ec_ty -> string
  val new_aux_range: t -> t
  val new_fun: t -> t
  val set_var: t -> var -> t
  val aux_vars: t -> (string * string) list
end


module Env: EnvT = struct
  module PTcmp = struct
    type t = string * ec_ty
    let compare = compare
  end

  module Mpty = Map.Make (PTcmp)

  type t = {
      arch: architecture;
      pd: Wsize.wsize;
      (* All names: functions, global variables, arguments, local variables, aux variables *)
      alls: Ss.t ref;
      (* All variables, excluding aux: global, argument, local variables *)
      vars: string Mv.t;
      funs: (string * (ty list * ty list)) Mf.t;
      array_theories: Sarraytheory.t ref;
      (* aux variables: intermediate variables introduced by extraction.
        aux variables have a prefix in their name that identifies their use
        (such as jasmin assignments, for loop bounds, intermediate leakage variables).
        - auxv: for each (prefix, type), the list of all aux (used for variable declaration).
        - count: number of currently live aux variables for each (prefix, type).
        *)
      auxv: string BatVect.t Mpty.t ref;
      mutable count: int Mpty.t;
      randombytes: Sint.t ref;
    }

  let vars env = env.vars

  let pd env = env.pd

  let arch env = env.arch

  let randombytes env = Sint.elements !(env.randombytes)

  let array_theories env = !(env.array_theories)

  let add_Array env n =
    env.array_theories := Sarraytheory.add (Array n) !(env.array_theories)

  let add_BArray env size =
    env.array_theories := Sarraytheory.add (ByteArray size) !(env.array_theories)

  let add_SBArray env (s:subarray) =
    add_BArray env s.sizeb;
    add_BArray env s.sizes;
    env.array_theories := Sarraytheory.add (SubByteArray s) !(env.array_theories)

  let add_WArray env n =
    env.array_theories := Sarraytheory.add (WArray n) !(env.array_theories)

  let add_ArrayWords env sizew sizea =
    add_Array env sizea;
    add_WArray env (sizew*sizea);
    env.array_theories := Sarraytheory.add (ArrayWords {sizew; sizea}) !(env.array_theories)

  let add_SubArray env sizes sizeb =
    add_Array env sizes;
    add_Array env sizeb;
    env.array_theories := Sarraytheory.add (SubArray {sizes; sizeb}) !(env.array_theories)

  let add_SubArrayDirect env sizew sizes sizeb =
    add_ArrayWords env sizew sizes;
    add_ArrayWords env sizew sizeb;
    env.array_theories := Sarraytheory.add (SubArrayDirect {sizew; sizes; sizeb}) !(env.array_theories)

  let add_SubArrayCast env sizews sizewb sizes sizeb =
    add_ArrayWords env sizews sizes;
    add_ArrayWords env sizewb sizeb;
    env.array_theories := Sarraytheory.add (SubArrayCast {sizews; sizewb; sizes; sizeb}) !(env.array_theories)

  let add_ArrayAccessCast env sizews sizewb sizeb =
    add_ArrayWords env sizewb sizeb;
    env.array_theories := Sarraytheory.add (ArrayAccessCast {sizews; sizewb; sizeb}) !(env.array_theories)

  let add_randombytes env n = env.randombytes := Sint.add n !(env.randombytes)

  let add_jarray env ws n =
    let ats = Sarraytheory.add (Array n) !(env.array_theories) in
    env.array_theories := Sarraytheory.add (WArray (arr_size ws n)) ats

  let create_name env s =
    if not (Ss.mem s !(env.alls)) then s
    else
      let rec aux i =
        let s = Format.sprintf "%s_%i" s i in
        if Ss.mem s !(env.alls) then aux (i+1)
        else s in
      aux 0

  let mkname env n =
    n |> String.uncapitalize_ascii |> escape |> create_name env

  let set_var env x =
    let s = mkname env x.v_name in
    { env with
      alls = ref (Ss.add s !(env.alls));
      vars = Mv.add x s env.vars }

  let add_ty env = function
      | Bty _ -> ()
      | Arr (_ws, n) -> add_Array env n

  let empty arch pd array_theories =
    {
      arch;
      pd;
      alls = ref keywords;
      vars = Mv.empty;
      funs = Mf.empty;
      array_theories;
      auxv  = ref Mpty.empty;
      count = Mpty.empty;
      randombytes = ref Sint.empty;
    }

  let set_fun env fd =
    let s = mkname env fd.f_name.fn_name in
    let funs =
      Mf.add fd.f_name (s, (fd.f_tyout, fd.f_tyin)) env.funs in
    { env with funs; alls = ref (Ss.add s !(env.alls)) }

  let get_funtype env f = snd (Mf.find f env.funs)

  let get_funname env f = fst (Mf.find f env.funs)

  (*
    Auxiliary variables created by "create_aux" have the given prefix and their
    name, and are declared with the given type. Each created variable is
    guaranteed to be unique for all create_aux calls with **the same env**
    and (recursively) with **envs further derived by new_aux_range**.
    However, aux var may be resued across other env (e.g. in two sibling
    envs created by two calls to new_aux_range on the same env).

    This is implemented by keeping a per-env count of created (prefix, ty) auxs
    (env.count), while env.auxv tracks the complete list of created aux in the
    whole function (for re-used and initial declaration).
    new_aux_range copies env.count, ensuring that we don't reuse variables
    already created for this env, but that different calls to new_aux_range do
    not share the same env.count (hence may use the same auxs).
  *)
  let create_aux env prefix ty =
    let i = try Mpty.find (prefix, ty) env.count with Not_found -> 0 in
    let l = try Mpty.find (prefix, ty) !(env.auxv) with Not_found -> BatVect.empty in
    env.count <- Mpty.add (prefix,ty) (i+1) env.count;
    if i < BatVect.length l then begin
      BatVect.get l i
    end else begin
      let aux = create_name env prefix in
      env.auxv := Mpty.add (prefix, ty) (BatVect.append aux l) !(env.auxv);
      env.alls := Ss.add aux !(env.alls);
      aux
    end

  (* Return the last created aux for (prefix, ty) in this env. *)
  let reuse_aux env prefix ty =
    let i = Mpty.find (prefix, ty) env.count in
    let l = Mpty.find (prefix, ty) !(env.auxv) in
    BatVect.get l (i-1)

  let new_aux_range env = { env with count = env.count }

  let new_fun env = { env with count = Mpty.empty; auxv = ref Mpty.empty}

  let aux_vars env  =
    let unpack_vars ((_, ty), vars) = List.map (fun v -> (v, ty)) (BatVect.to_list vars) in
    List.flatten (List.map unpack_vars (Mpty.bindings !(env.auxv)))
end

let check_array env x =
  match (L.unloc x).v_ty with
  | Arr(ws, n) ->
      Sarraytheory.mem (Array n) (Env.array_theories env) &&
      Sarraytheory.mem (WArray (arr_size ws n)) (Env.array_theories env)
  | _ -> true

(* ------------------------------------------------------------------- *)
(* Formatting to string helpers *)

let fmt_array_theory at = match at with
  | Array n -> Format.sprintf "Array%i" n
  | WArray n -> Format.sprintf "WArray%i" n
  | ArrayWords aw -> Format.sprintf "ArrayWords%iW%i" aw.sizea (8*aw.sizew)
  | SubArray x -> Format.sprintf "SubArray%i_%i" x.sizes x.sizeb
  | SubArrayDirect x -> Format.sprintf "SubArrayDirect%i_%iW%i" x.sizes x.sizeb (8*x.sizew)
  | SubArrayCast x -> Format.sprintf "SubArrayDirect%iW%i_%iW%i" x.sizes (8*x.sizews) x.sizeb (8*x.sizewb)
  | ArrayAccessCast x -> Format.sprintf "ArrayAccessCastW%i_%iW%i" (8*x.sizews) x.sizeb (8*x.sizewb)
  | ByteArray n -> Format.sprintf "BArray%i" n
  | SubByteArray x -> Format.sprintf "SBArray%i_%i" x.sizeb x.sizes

let fmt_Wsz sz = Format.asprintf "W%i" (int_of_ws sz)

let fmt_op2 fmt op =
  let fmt_signed fmt ws is = function
    | E.Cmp_w (Signed, _)   -> Format.fprintf fmt "\\s%s" ws
    | E.Cmp_w (Unsigned, _) -> Format.fprintf fmt "\\u%s" ws
    | _                     -> Format.fprintf fmt "%s" is
  in
  let fmt_div fmt ws uints sints sg k =
    match sg, k with
    | Signed, E.Op_w _   -> Format.fprintf fmt "\\s%s" ws
    | Unsigned, E.Op_w _ -> Format.fprintf fmt "\\u%s" ws
    | Signed, E.Op_int   -> Format.fprintf fmt "%s" sints
    | Unsigned, E.Op_int -> Format.fprintf fmt "%s" uints
  in

  let fmt_vop2 fmt (s,ve,ws) =
    Format.fprintf fmt "\\v%s%iu%i" s (int_of_velem ve) (int_of_ws ws)
  in

  match op with
  | E.Obeq   -> Format.fprintf fmt "="
  | E.Oand   -> Format.fprintf fmt "/\\"
  | E.Oor    -> Format.fprintf fmt "\\/"
  | E.Oadd _ -> Format.fprintf fmt "+"
  | E.Omul _ -> Format.fprintf fmt "*"
  | E.Odiv(sg, k) -> fmt_div fmt "div" "%/" "\\zquot" sg k
  | E.Omod(sg, k) -> fmt_div fmt "mod" "%%" "\\zrem"  sg k

  | E.Osub  _ -> Format.fprintf fmt "-"

  | E.Oland _ -> Format.fprintf fmt "`&`"
  | E.Olor  _ -> Format.fprintf fmt "`|`"
  | E.Olxor _ -> Format.fprintf fmt "`^`"
  | E.Olsr  _ -> Format.fprintf fmt "`>>`"
  | E.Olsl  _ -> Format.fprintf fmt "`<<`"
  | E.Oasr  _ -> Format.fprintf fmt "`|>>`"
  | E.Orol _ -> Format.fprintf fmt "`|<<|`"
  | E.Oror _ -> Format.fprintf fmt "`|>>|`"

  | E.Oeq   _ -> Format.fprintf fmt "="
  | E.Oneq  _ -> Format.fprintf fmt "<>"
  | E.Olt s| E.Ogt s -> fmt_signed fmt "lt" "<" s
  | E.Ole s | E.Oge s -> fmt_signed fmt "le" "<=" s

  | Ovadd(ve,ws) -> fmt_vop2 fmt ("add", ve, ws)
  | Ovsub(ve,ws) -> fmt_vop2 fmt ("sub", ve, ws)
  | Ovmul(ve,ws) -> fmt_vop2 fmt ("mul", ve, ws)
  | Ovlsr(ve,ws) -> fmt_vop2 fmt ("shr", ve, ws)
  | Ovlsl(ve,ws) -> fmt_vop2 fmt ("shl", ve, ws)
  | Ovasr(ve,ws) -> fmt_vop2 fmt ("sar", ve, ws)
  | Owi2 _ -> assert false (* wint should have been removed by wint_int or wint_word *)

let fmt_access aa = if aa = Warray_.AAdirect then "_direct" else ""

(* ------------------------------------------------------------------- *)
(* Easycrypt AST pretty-printing *)

let pp_ec_ident fmt ident = Format.fprintf fmt "@[%a@]" (pp_list "." pp_string) ident

let rec pp_ec_ast_expr fmt e = match e with
    | Econst z ->
        if Z.leq Z.zero z then Format.fprintf fmt "%a" Z.pp_print z
        else Format.fprintf fmt "(%a)" Z.pp_print z
    | Ebool b -> pp_bool fmt b
    | Eident s -> pp_ec_ident fmt s
    | Eapp (f, ops) ->
            Format.fprintf fmt "@[(@,%a@,)@]"
            (Format.(pp_print_list ~pp_sep:(fun fmt () -> fprintf fmt "@ ")) pp_ec_ast_expr)
            (f::ops)
    | Efun1 (var, e) ->
            Format.fprintf fmt "@[(fun %s => %a)@]" var pp_ec_ast_expr e
    | Eop2 (op, e1, e2) -> pp_ec_op2 fmt (op, e1, e2)
    | Eop3 (op, e1, e2, e3) -> pp_ec_op3 fmt (op, e1, e2, e3)
    | Elist es -> Format.fprintf fmt "@[[%a]@]" (pp_list ";@ " pp_ec_ast_expr) es
    | Etuple es -> Format.fprintf fmt "@[(%a)@]" (pp_list ",@ " pp_ec_ast_expr) es

and pp_ec_op2 fmt (op2, e1, e2) =
    let f fmt = match op2 with
    | ArrayGet -> Format.fprintf fmt "@[%a.[%a]@]"
    | Plus -> Format.fprintf fmt "@[(%a +@ %a)@]"
    | Infix s -> (fun pp1 e1 -> Format.fprintf fmt "@[(%a %s@ %a)@]" pp1 e1 s)
    in
    (f fmt) pp_ec_ast_expr e1 pp_ec_ast_expr e2

and pp_ec_op3 fmt (op, e1, e2, e3) =
    let f fmt = match op with
    | Ternary -> Format.fprintf fmt "@[(%a ? %a : %a)@]"
    | If -> Format.fprintf fmt "@[(if %a then %a else %a)@]"
    | InORange -> Format.fprintf fmt "@[(%a <= %a < %a)@]"
    in
    (f fmt) pp_ec_ast_expr e1 pp_ec_ast_expr e2 pp_ec_ast_expr e3

let pp_ec_lvalue fmt (lval: ec_lvalue) =
    match lval with
    | LvIdent ident -> pp_ec_ident fmt ident
    | LvArrItem (ident, e) -> pp_ec_op2 fmt (ArrayGet, Eident ident, e)

let pp_ec_lvalues fmt (lvalues: ec_lvalues) =
    match lvalues with
    | [] -> assert false
    | [lv] -> pp_ec_lvalue fmt lv
    | _ -> Format.fprintf fmt "@[(%a)@]" (pp_list ",@ " pp_ec_lvalue) lvalues

let rec pp_ec_ast_stmt fmt stmt =
    Format.fprintf fmt "@[<v>%a@]" (pp_list "@ " pp_ec_ast_instr) stmt

and pp_ec_ast_instr fmt instr =
    match instr with
    | ESasgn (lv, e) -> Format.fprintf fmt "@[%a <-@ %a;@]" pp_ec_lvalues lv pp_ec_ast_expr e
    | EScall (lvs, f, args) ->
            let pp_res fmt lvs =
                if lvs = [] then
                    Format.fprintf fmt ""
                else
                    Format.fprintf fmt "%a <%@ " pp_ec_lvalues lvs
            in
            Format.fprintf fmt "@[%a%a (%a);@]"
                pp_res lvs
                pp_ec_ast_expr (Eident f)
                (pp_list ",@ " pp_ec_ast_expr) args
    | ESsample (lv, e) -> Format.fprintf fmt "@[%a <$@ %a;@]" pp_ec_lvalues lv pp_ec_ast_expr e
    | ESif (e, c1, c2) ->
            Format.fprintf fmt "@[<v>if (%a) {@   %a@ } else {@   %a@ }@]"
            pp_ec_ast_expr e pp_ec_ast_stmt c1 pp_ec_ast_stmt c2
    | ESwhile (e, c) ->
            Format.fprintf fmt "@[<v>while (%a) {@   %a@ }@]"
            pp_ec_ast_expr e pp_ec_ast_stmt c
    | ESreturn e -> Format.fprintf fmt "@[return %a;@]" pp_ec_ast_expr e
    | EScomment s -> Format.fprintf fmt "@[(* %s *)@]" s

let pp_ec_vdecl fmt (x, ty) = Format.fprintf fmt "%s:%a" x pp_string ty

let pp_ec_fun_decl fmt fdecl =
    let pp_ec_rty fmt rtys =
        if rtys = [] then Format.fprintf fmt "unit"
        else Format.fprintf fmt "@[%a@]" (pp_list " *@ " pp_string) rtys
    in
    Format.fprintf fmt
        "@[proc %s (@[%a@]) : @[%a@]@]"
        fdecl.fname
        (pp_list ",@ " pp_ec_vdecl) fdecl.args
        pp_ec_rty fdecl.rtys

let pp_ec_fun fmt f =
    let pp_decl_s fmt v = Format.fprintf fmt "var %a;" pp_ec_vdecl v in
    Format.fprintf fmt
        "@[<v>@[%a = {@]@   @[<v>%a@ %a@]@ }@]"
        pp_ec_fun_decl f.decl
        (pp_list "@ " pp_decl_s) f.locals
        pp_ec_ast_stmt  f.stmt

let pp_ec_item fmt it =
  let pp_option pp fmt = function
    | Some x -> pp fmt x
    | None -> ()
  in
  let pp_list_paren sep pp fmt xs =
    if xs = [] then ()
    else pp_paren (pp_list sep pp) fmt xs
  in
  match it with
  | IrequireImport is ->
    Format.fprintf fmt "@[require import@ @[%a@].@]" (pp_list "@ " pp_string) is
  | Iimport is ->
    Format.fprintf fmt "@[import@ @[%a@].@]" (pp_list "@ " pp_string) is
  | IfromImport (m, is) ->
    Format.fprintf fmt "@[from %s import@ @[%a@].@]" m (pp_list "@ " pp_string) is
  | IfromRequireImport (m, is) ->
    Format.fprintf fmt "@[from %s require import@ @[%a@].@]" m (pp_list "@ " pp_string) is
  | Iabbrev (a, e) ->
    Format.fprintf fmt "@[abbrev %s =@ @[%a@].@]" a pp_ec_ast_expr e
  | ImoduleType mt ->
    Format.fprintf fmt "@[<v>@[module type %s = {@]@   @[<v>%a@]@ }.@]"
      mt.name (pp_list "@ " pp_ec_fun_decl) mt.funs
  | Imodule m ->
    let pp_mp fmt (m, mt) = Format.fprintf fmt "%s:%s" m mt in
    Format.fprintf fmt "@[<v>@[module %s@[%a@]%a = {@]@   @[<v>%a%a%a@]@ }.@]"
      m.name
      (pp_list_paren ",@ " pp_mp) m.params
      (pp_option (fun fmt s -> Format.fprintf fmt " : %s" s)) m.ty
      (pp_list "@ " (fun fmt (v, t) -> Format.fprintf fmt "@[var %s : %s@]" v t)) m.vars
      (fun fmt _ -> if m.vars = [] then (Format.fprintf fmt "") else (Format.fprintf fmt "@ ")) ()
      (pp_list "@ " pp_ec_fun) m.funs

let pp_ec_prog fmt prog = Format.fprintf fmt "@[<v>%a@]" (pp_list "@ @ " pp_ec_item) prog

(* ------------------------------------------------------------------- *)
(* Array theory cloning *)

let fmt_array_decl fmt i =
  Format.fprintf fmt "@[<v>from Jasmin require import JArray.@ @ ";
  Format.fprintf fmt "clone export PolyArray as Array%i  with op size <- %i.@]@." i i

let fmt_warray_decl fmt i =
  Format.fprintf fmt "@[<v>from Jasmin require import JWord_array.@ @ ";
  Format.fprintf fmt "clone export WArray as WArray%i  with op size <- %i.@]@." i i

let fmt_op fmt (op_name, v) = Format.fprintf fmt "op %s <- %i" op_name v

let fmt_the fmt (th, v) = Format.fprintf fmt "theory %s <- %s" th v

let fmt_th fmt (th, v) = Format.fprintf fmt "theory %s <= %s" th v

let fmt_arraywords_decl fmt (aw: arraywords) =
  let arrayn = Format.sprintf "Array%i" aw.sizea in
  let warrayn = Format.sprintf "WArray%i" (aw.sizew*aw.sizea) in
  let fmt_insts fmt (aw: arraywords) =
    Format.fprintf fmt "%a,@ %a,@ %a,@ %a,@ %a"
    fmt_op ("sizeW", aw.sizew)
    fmt_op ("sizeA", aw.sizea)
    fmt_th ("Word", Format.sprintf "W%i" (8*aw.sizew))
    fmt_th ("ArrayN", arrayn)
    fmt_th ("WArrayN", warrayn)
  in
  Format.fprintf fmt "@[<v>from Jasmin require import JWord JWord_array.@ @ ";
  Format.fprintf fmt "@[<v>require import %s %s.@ @ " arrayn warrayn;
  Format.fprintf fmt "clone export ArrayWords as %s  with @[%a@].@]@."
    (fmt_array_theory (ArrayWords aw))
    fmt_insts aw

let fmt_subarray_decl fmt (s: subarray) =
  let arrays = Format.sprintf "Array%i" s.sizes in
  let arrayb = Format.sprintf "Array%i" s.sizeb in
  let fmt_insts fmt (s: subarray) =
    Format.fprintf fmt "%a,@ %a,@ %a,@ %a"
    fmt_op ("sizeS", s.sizes)
    fmt_op ("sizeB", s.sizeb)
    fmt_th ("ArrayS", arrays)
    fmt_th ("ArrayB", arrayb)
  in
  Format.fprintf fmt "@[<v>from Jasmin require import JArray.@ @ ";
  Format.fprintf fmt "@[<v>require import %s %s.@ @ " arrays arrayb;
  Format.fprintf fmt "clone export SubArray as %s  with @[%a@].@]@."
    (fmt_array_theory (SubArray s))
    fmt_insts s

let fmt_subarraydirect_decl fmt (s: subarraydirect) =
  let arrayws = fmt_array_theory (ArrayWords {sizew=s.sizew; sizea=s.sizes}) in
  let arraywb = fmt_array_theory (ArrayWords {sizew=s.sizew; sizea=s.sizeb}) in
  let fmt_insts fmt (s: subarraydirect) =
    Format.fprintf fmt "%a,@ %a,@ %a,@ %a,@ %a,@ %a"
    fmt_op ("sizeW", s.sizew)
    fmt_op ("sizeS", s.sizes)
    fmt_op ("sizeB", s.sizeb)
    fmt_the ("Word", Format.sprintf "W%i" (8*s.sizew))
    fmt_th ("ArrayWordsS", arrayws)
    fmt_th ("ArrayWordsB", arraywb)
  in
  Format.fprintf fmt "@[<v>from Jasmin require import JWord JWord_array.@ @ ";
  Format.fprintf fmt "@[<v>require import %s %s.@ @ " arrayws arraywb;
  Format.fprintf fmt "clone export SubArrayDirect as %s  with @[%a@].@]@."
    (fmt_array_theory (SubArrayDirect s))
    fmt_insts s

let fmt_subarraycast_decl fmt (s: subarraycast) =
  let arrayws = fmt_array_theory (ArrayWords {sizew=s.sizews; sizea=s.sizes}) in
  let arraywb = fmt_array_theory (ArrayWords {sizew=s.sizewb; sizea=s.sizeb}) in
  let fmt_insts fmt (s: subarraycast) =
    Format.fprintf fmt "%a,@ %a,@ %a,@ %a,@ %a,@ %a,@ %a,@ %a"
    fmt_op ("sizeWS", s.sizews)
    fmt_op ("sizeWB", s.sizewb)
    fmt_op ("sizeS", s.sizes)
    fmt_op ("sizeB", s.sizeb)
    fmt_the ("WordS", Format.sprintf "W%i" (8*s.sizews))
    fmt_the ("WordB", Format.sprintf "W%i" (8*s.sizewb))
    fmt_th ("ArrayWordsS", arrayws)
    fmt_th ("ArrayWordsB", arraywb)
  in
  Format.fprintf fmt "@[<v>from Jasmin require import JWord JWord_array.@ @ ";
  Format.fprintf fmt "@[<v>require import %s %s.@ @ " arrayws arraywb;
  Format.fprintf fmt "clone export SubArrayCast as %s  with @[%a@].@]@."
    (fmt_array_theory (SubArrayCast s))
    fmt_insts s

let fmt_arrayaccesscast_decl fmt (s: arrayaccesscast) =
  let arraywb = fmt_array_theory (ArrayWords {sizew=s.sizewb; sizea=s.sizeb}) in
  let fmt_insts fmt (s: arrayaccesscast) =
    Format.fprintf fmt "%a,@ %a,@ %a,@ %a,@ %a,@ %a"
    fmt_op ("sizeWS", s.sizews)
    fmt_op ("sizeWB", s.sizewb)
    fmt_op ("sizeB", s.sizeb)
    fmt_the ("WordS", Format.sprintf "W%i" (8*s.sizews))
    fmt_the ("WordB", Format.sprintf "W%i" (8*s.sizewb))
    fmt_th ("ArrayWordsB", arraywb)
  in
  Format.fprintf fmt "@[<v>from Jasmin require import JWord JWord_array.@ @ ";
  Format.fprintf fmt "@[<v>require import %s.@ @ " arraywb;
  Format.fprintf fmt "clone export ArrayAccessCast as %s  with @[%a@].@]@."
    (fmt_array_theory (ArrayAccessCast s))
    fmt_insts s

let fmt_bytearray_decl fmt n =
  Format.fprintf fmt "@[<v>from Jasmin require import JByte_array.@ @ ";
  Format.fprintf fmt "clone include ByteArray with op size <= %i.@]@." n

let fmt_subbytearray_decl fmt (s:subarray) =
  let arrays = fmt_array_theory (ByteArray s.sizes) in
  let arrayb = fmt_array_theory (ByteArray s.sizeb) in
  let fmt_insts fmt (s: subarray) =
    Format.fprintf fmt "%a,@ %a"
    fmt_th ("Asmall", arrays)
    fmt_th ("Abig", arrayb)
  in
  Format.fprintf fmt "@[<v>from Jasmin require import JByte_array.@ @ ";
  Format.fprintf fmt "@[<v>require import %s %s.@ @ " arrays arrayb;
  Format.fprintf fmt "clone SubByteArray as %s  with @[%a@].@]@."
    (fmt_array_theory (SubByteArray s))
    fmt_insts s

let save_array_theory ~prefix at =
  let fname = Format.sprintf "%s.ec" (fmt_array_theory at) in
  let path = Filename.concat prefix fname in
  let out = open_out path in
  let fmt = Format.formatter_of_out_channel out in
  match at with
    | Array n -> fmt_array_decl fmt n
    | WArray n -> fmt_warray_decl fmt n
    | ArrayWords aw -> fmt_arraywords_decl fmt aw
    | SubArray sa -> fmt_subarray_decl fmt sa
    | SubArrayDirect sad -> fmt_subarraydirect_decl fmt sad
    | SubArrayCast sac -> fmt_subarraycast_decl fmt sac
    | ArrayAccessCast asc -> fmt_arrayaccesscast_decl fmt asc
    | ByteArray n -> fmt_bytearray_decl fmt n
    | SubByteArray sa -> fmt_subbytearray_decl fmt sa
    ;
  close_out out

(* ------------------------------------------------------------------- *)
(* Easycrypt AST construction helpers *)

let ec_ident s = Eident [s]
let ec_aget a i = Eop2 (ArrayGet, a, i)
let ec_int x = Econst (Z.of_int x)

let ec_vars (env: Env.t) (x: var) = Mv.find x (Env.vars env)
let ec_vari env (x:var) = Eident [ec_vars env x]

let glob_mem = ["Glob"; "mem"]
let glob_memi = Eident glob_mem

let ec_pd env = Eident [Format.sprintf "W%d" (int_of_ws (Env.pd env)); "to_uint"]

let ec_apps1 s e = Eapp (ec_ident s, [e])

let ec_zeroext_sz (szo, szi) e =
  let io, ii = int_of_ws szo, int_of_ws szi in
  if ii < io then ec_apps1 (Format.sprintf "zeroextu%i" io) e
  else if ii = io then e
  else (* io < ii *) ec_apps1 (Format.sprintf "truncateu%i" io) e

let ec_zeroext (t_o, t_i) e =
  if t_o = t_i then e else ec_zeroext_sz (ws_of_ty t_o, ws_of_ty t_i) e

let ec_Array env n = Env.add_Array env n; Format.sprintf "Array%i" n

let ec_WArray env n = Env.add_WArray env n; Format.sprintf "WArray%i" n

let ec_BArray env n = Env.add_BArray env n; Format.sprintf "BArray%i" n

let ec_SBArray env (s:subarray) =
  Env.add_SBArray env s;
  Format.sprintf "SBArray%i_%i" s.sizeb s.sizes

let toec_ty onarray env ty = match ty with
    | Bty Bool -> "bool"
    | Bty Int  -> "int"
    | Bty (U ws) -> Format.sprintf "%s.t" (fmt_Wsz ws)
    | Arr(ws,n) -> onarray env ws n

let onarray_ty_dfl env ws n =
  Format.sprintf "%s.t %s.t" (fmt_Wsz ws) (ec_Array env n)

let of_list_dfl env _ws n =
  Eapp (Eident [ec_Array env n; "of_list"], [ec_ident "witness"])

(* ------------------------------------------------------------------- *)
(* Extraction of array operations *)

module type EcArray = sig
  val ec_darray8: Env.t -> int -> ec_expr
  val ec_cast_array: Env.t -> wsize * int -> wsize * int -> ec_expr -> ec_expr
  val toec_pget: Env.t -> Memory_model.aligned * Warray_.arr_access * wsize * int gvar * ec_expr -> ec_expr
  val toec_psub: Env.t -> Warray_.arr_access * wsize * int * int ggvar * ec_expr -> ec_expr
  val toec_laset: Env.t -> Warray_.arr_access * wsize * int gvar * ec_expr -> ec_expr -> ec_instr
  val toec_lasub: Env.t -> Warray_.arr_access * wsize * int * int gvar L.located * ec_expr -> ec_expr -> ec_expr

  val onarray_ty: Env.t -> wsize -> int -> string
  val add_arr: Env.t -> wsize -> int -> unit
  val add_jarray: Env.t -> wsize -> int -> unit
  val of_list:  Env.t -> wsize -> int -> ec_expr

end


module EcArrayOld : EcArray = struct
  let ec_WArray_init env ws n =
        Eident [ec_WArray env (arr_size ws n); Format.sprintf "init%i" (int_of_ws ws)]

  let ec_WArray_initf env ws n f =
    let i = Env.create_name env "i" in
    Eapp (ec_WArray_init env ws n, [Efun1 (i, f i)])

  let ec_Array_init env len = Eident [ec_Array env len; "init"]

  let ec_initi env (x, n, ws) =
    let f i = ec_aget x (ec_ident i) in
    ec_WArray_initf env ws n f

  let ec_initi_var env (x, n, ws) = ec_initi env (ec_vari env x, n, ws)

  let ec_darray8 env n =
    let wa = ec_WArray env n in
    let eto = Efun1 ("a", Eapp (Eident [ec_Array env n; "init"], [
      Efun1 ("i", Eapp (Eident [wa; "get8"], [ec_ident "a"; ec_ident "i"]))
      ])) in
    Eapp (
            ec_ident "dmap",
            [Eident [ec_WArray env n; "darray"]; eto]
          )

  let ec_cast_array env (ws, n) (wse, ne) e =
    let i = Env.create_name env "i" in
    let geti = ec_ident (Format.sprintf "get%i" (int_of_ws ws)) in
    let init_fun = Efun1 (i, Eapp (geti, [ec_initi env (e, ne, wse); ec_ident i])) in
    Eapp (ec_Array_init env n, [init_fun])

  let toec_pget env (a, aa, ws, x, e) =
    let (xws, n) = array_kind x.v_ty in
    if ws = xws && aa = Warray_.AAscale then
       ec_aget (ec_vari env x) e
    else
      Eapp (
        (ec_ident (Format.sprintf "get%i%s" (int_of_ws ws) (fmt_access aa))),
        [ec_initi_var env (x, n, xws); e]
       )

  let toec_psub env (aa, ws, len, x, e) =
    assert (check_array env x.gv);
    let i = Env.create_name env "i" in
    let x = L.unloc x.gv in
    let (xws,n) = array_kind x.v_ty in
    if ws = xws && aa = Warray_.AAscale then
        Eapp (
            ec_Array_init env len,
            [
                Efun1 (i, ec_aget (ec_vari env x)  (Eop2 (Plus, e, ec_ident i)))
        ])
    else
        Eapp (
            ec_Array_init env len,
            [
                Efun1 (i,
                Eapp (ec_ident (Format.sprintf "get%i%s" (int_of_ws ws) (fmt_access aa)), [
                    ec_initi_var env (x, n, xws); Eop2 (Plus, e, ec_ident i)
            ])
                )
        ])

  let toec_laset env (aa, ws, x, e1) e =
    let (xws,n) = array_kind x.v_ty in
    if ws = xws && aa = Warray_.AAscale then
      ESasgn ([LvArrItem ([ec_vars env x], e1)], e)
    else
      let eset =
        let nws = n * int_of_ws xws in
        let warray = ec_WArray env (nws / 8) in
        let waget = Eident [warray; Format.sprintf "get%i" (int_of_ws xws)] in
        let wsi = int_of_ws ws in
        let waset = Eident [warray; Format.sprintf "set%i%s" wsi (fmt_access aa)] in
        let updwa = Eapp (waset, [ec_initi_var env (x, n, xws); e1; e]) in
        Eapp (ec_Array_init env n, [Eapp (waget, [updwa])]) in
      ESasgn ([LvIdent [ec_vars env x]], eset)

  let toec_lasub env (aa, ws, len, x, e1) e =
    assert (check_array env x);
    let x = L.unloc x in
    let (xws, n) = array_kind x.v_ty in
    if ws = xws && aa = Warray_.AAscale then
        let i = Env.create_name env "i" in
        let range_ub = Eop2 (Plus, e1, ec_int len) in
        Eapp (ec_Array_init env n, [
            Efun1 (i, Eop3 (
                If,
                Eop3 (InORange, e1, ec_ident i, range_ub),
                ec_aget e (Eop2 (Infix "-", ec_ident i, e1)),
                ec_aget (ec_vari env x) (ec_ident i)
                ))
        ])
    else
      let nws = n * int_of_ws xws in
      let nws8 = nws / 8 in
      let start =
        if aa = Warray_.AAscale then
          Eop2 (Infix "*", ec_int (int_of_ws ws / 8), e1)
        else
          e1
      in
      let len8 = len * int_of_ws ws / 8 in
      let i = Env.create_name env "i" in
      let in_range = Eop3 (InORange, start, ec_ident i, Eop2 (Plus, start, ec_int len8)) in
      let ainit = Eident [ec_WArray env nws8; "init8"] in
      let aw_get8 len = Eident [ec_WArray env len; "get8"] in
      let at = Eapp (aw_get8 len8, [ec_initi env (e, len, ws); Eop2 (Infix "-", ec_ident i, start)]) in
      let ae = Eapp (aw_get8 nws8, [ec_initi_var env (x, n, xws); ec_ident i]) in
      let a = Eapp (ainit, [Efun1 (i, Eop3 (If, in_range, at, ae))]) in
      let wag = Eident [ec_WArray env nws8; Format.sprintf "get%i" (int_of_ws xws)] in
      Eapp (ec_Array_init env n, [Eapp (wag, [a])])

  let onarray_ty = onarray_ty_dfl

  let add_arr env _ws n = Env.add_Array env n
  let add_jarray env ws n = Env.add_jarray env ws n

  let of_list =  of_list_dfl
end

module EcWArray: EcArray = struct
  let ec_darray8 env n =
    Env.add_ArrayWords env 1 n;
    let aw = fmt_array_theory (ArrayWords { sizew=1; sizea=n }) in
    let eto = Eident [aw; "to_word_array"] in
    Eapp (
            ec_ident "dmap",
            [Eident [ec_WArray env n; "darray"]; eto]
          )

  let ec_cast_array env (ws, n) (wse, ne) e =
    let sizews = ws2bytes ws in
    let sizewb = ws2bytes wse in
    Env.add_SubArrayCast env sizews sizewb n ne;
    let sa = fmt_array_theory (SubArrayCast { sizews; sizewb; sizes = n; sizeb = ne }) in
    Eapp (Eident [sa; "get_sub"], [e; ec_int 0])

  let toec_pget env (a, aa, ws, x, e) =
    let (xws,n) = array_kind x.v_ty in
    if ws = xws && aa = Warray_.AAscale then
       ec_aget (ec_vari env x) e
    else
      let sizews = ws2bytes ws in
      let sizewb = ws2bytes xws in
      Env.add_ArrayAccessCast env sizews sizewb n;
      let arrayaccesscast = fmt_array_theory (ArrayAccessCast { sizews; sizewb; sizeb = n }) in
      let getf = Format.sprintf "get_cast%s" (fmt_access aa) in
      Eapp (Eident [arrayaccesscast; getf], [ec_vari env x; e])

  let toec_psub env (aa, ws, len, x, e) =
    assert (check_array env x.gv);
    let x = L.unloc x.gv in
    let (xws,n) = array_kind x.v_ty in
    let subf =
      if ws = xws then
        if aa = Warray_.AAscale then begin
          (* Sub-array access aligned *)
          Env.add_SubArray env len n;
          let subarray = fmt_array_theory (SubArray { sizes = len; sizeb = n }) in
          Eident [subarray; "get_sub"]
        end else begin
          (* Sub-array access unaligned *)
          let sizew = ws2bytes ws in
          Env.add_SubArrayDirect env sizew len n;
          let sa = fmt_array_theory (SubArrayDirect { sizew; sizes = len; sizeb = n }) in
          Eident [sa; "get_sub_direct"]
        end
      else begin
        (* Sub-array access typecast (direct or not) *)
        let get_sub = if aa = Warray_.AAscale then "get_sub" else "get_sub_direct" in
        let sizews = ws2bytes ws in
        let sizewb = ws2bytes xws in
        Env.add_SubArrayCast env sizews sizewb len n;
        let sa = fmt_array_theory (SubArrayCast { sizews; sizewb; sizes = len; sizeb = n }) in
        Eident [sa; get_sub]
      end
    in
    Eapp (subf, [ec_vari env x; e])

  let toec_laset env (aa, ws, x, e1) e =
    let (xws,n) = array_kind x.v_ty in
    if ws = xws && aa = Warray_.AAscale then
      ESasgn ([LvArrItem ([ec_vars env x], e1)], e)
    else
      let eset =
        let sizews = ws2bytes ws in
        let sizewb = ws2bytes xws in
        Env.add_ArrayAccessCast env sizews sizewb n;
        let arrayaccesscast = fmt_array_theory (ArrayAccessCast { sizews; sizewb; sizeb = n }) in
        let setf = Format.sprintf "set_cast%s" (fmt_access aa) in
        let subf = Eident [arrayaccesscast; setf] in
        Eapp (subf, [ec_vari env x; e1; e]) in
      ESasgn ([LvIdent [ec_vars env x]], eset)

  let toec_lasub env (aa, ws, len, x, e1) e =
    assert (check_array env x);
    let x = L.unloc x in
    let (xws, n) = array_kind x.v_ty in
    let subf =
      if ws = xws then
        if aa = Warray_.AAscale then begin
          (* Sub-array update aligned *)
          Env.add_SubArray env len n;
          let subarray = fmt_array_theory (SubArray { sizes = len; sizeb = n }) in
          Eident [subarray; "set_sub"]
        end else begin
          (* Sub-array update unaligned *)
          let sizew = ws2bytes ws in
          Env.add_SubArrayDirect env sizew len n;
          let sa = fmt_array_theory (SubArrayDirect { sizew; sizes = len; sizeb = n }) in
          Eident [sa; "set_sub_direct"]
        end
      else begin
        (* Sub-array update typecast (direct or not) *)
        let set_sub = if aa = Warray_.AAscale then "set_sub" else "set_sub_direct" in
        let sizews = ws2bytes ws in
        let sizewb = ws2bytes xws in
        Env.add_SubArrayCast env sizews sizewb len n;
        let sa = fmt_array_theory (SubArrayCast { sizews; sizewb; sizes = len; sizeb = n }) in
        Eident [sa; set_sub]
      end
    in
    Eapp (subf, [ec_vari env x; e1; e])

  let onarray_ty = onarray_ty_dfl

  let add_arr env _ws n = Env.add_Array env n

  let add_jarray env ws n = Env.add_jarray env ws n

  let of_list =  of_list_dfl
end

module EcBArray : EcArray = struct
  let ec_darray8 (env: Env.t) (sz:int) =
    Eident [ec_BArray env sz; "darray"]

  let ec_cast_array (env:Env.t) (ws1, sz1) (ws2, sz2) e =
    assert (Prog.arr_size ws1 sz1 = Prog.arr_size ws2 sz2);
    e

  let direct aa =
    match aa with
    | Warray_.AAdirect -> "d"
    | Warray_.AAscale -> ""

  let scale aa ws =
    match aa with
    | Warray_.AAdirect -> ""
    | Warray_.AAscale -> Format.sprintf "%i" (int_of_ws ws)

  let toec_pget (env:Env.t) (a, aa, ws, x, ei) =
    let (xws, n) = array_kind x.v_ty in
    let sz = arr_size xws n in
    Eapp (Eident [ec_BArray env sz; Format.sprintf "get%i%s" (int_of_ws ws) (direct aa)],
          [ec_vari env x; ei])

  let toec_laset (env:Env.t) (aa, ws, x, ei) e =
    let (xws,n) = array_kind x.v_ty in
    let sz = arr_size xws n in
    let eset =
      Eapp (Eident [ec_BArray env sz; Format.sprintf "set%i%s" (int_of_ws ws) (direct aa)],
            [ec_vari env x; ei; e]) in
    ESasgn ([LvIdent [ec_vars env x]], eset)

  let toec_psub (env:Env.t) (aa, ws, len, x, ei) =
    let x = L.unloc x.gv in
    let (xws,n) = array_kind x.v_ty in
    let sizes = arr_size ws len in
    let sizeb = arr_size xws n in
    let s = { sizes; sizeb } in
    Eapp(Eident [ec_SBArray env s; Format.sprintf "get_sub%s" (scale aa ws)],
         [ec_vari env x; ei])

  let toec_lasub (env:Env.t) (aa, ws, len, x, ei) e =
    let x = L.unloc x in
    let (xws,n) = array_kind x.v_ty in
    let sizes = arr_size ws len in
    let sizeb = arr_size xws n in
    let s = { sizes; sizeb } in
    Eapp(Eident [ec_SBArray env s; Format.sprintf "set_sub%s" (scale aa ws)],
         [ec_vari env x; ei; e])

  let onarray_ty env ws n =
    Format.sprintf "%s.t" (ec_BArray env (arr_size ws n))

  let add_arr env ws n = Env.add_BArray env (arr_size ws n)

  let add_jarray = add_arr

  let of_list env ws n =
    Eident [ec_BArray env (arr_size ws n); Format.sprintf "of_list%i" (int_of_ws ws)]

end

(* ------------------------------------------------------------------- *)
(* Jasmin AST transformation and helpers *)

let base_op = function
  | Sopn.Oasm (Arch_extra.BaseOp (_, o)) -> Sopn.Oasm (Arch_extra.BaseOp(None,o))
  | o -> o

let ty_expr = function
  | Pconst _       -> tint
  | Pbool _        -> tbool
  | Parr_init len  -> Arr (U8, len)
  | Pvar x         -> x.gv.L.pl_desc.v_ty
  | Pload (_, sz,_) -> tu sz
  | Pget  (_,_, sz,_,_) -> tu sz
  | Psub (_,ws, len, _, _) -> Arr(ws, len)
  | Papp1 (op,_)   -> Conv.ty_of_cty (snd (E.type_of_op1 op))
  | Papp2 (op,_,_) -> Conv.ty_of_cty (snd (E.type_of_op2 op))
  | PappN (op, _)  -> Conv.ty_of_cty (snd (E.type_of_opN op))
  | Pif (ty,_,_,_) -> ty

let ty_sopn pd asmOp op es =
  match op with
  (* Do a special case for copy since the Coq type loose information  *)
  | Sopn.Opseudo_op (Pseudo_operator.Ocopy(ws, p)) ->
    let l = [Arr(ws, Conv.int_of_pos p)] in
    l, l
  | Sopn.Opseudo_op (Pseudo_operator.Oswap _) ->
    let l = List.map ty_expr es in
    l, l
  | _ ->
    List.map Conv.ty_of_cty (Sopn.sopn_tout pd asmOp op),
    List.map Conv.ty_of_cty (Sopn.sopn_tin pd asmOp op)

(* This code replaces for loop that modify the loop counter by while loop,
   it would be nice to prove in Coq the validity of the transformation *)

let is_write_lv x = function
  | Lnone _ | Lmem _ -> false
  | Lvar x' | Laset(_, _, _, x', _) | Lasub (_, _, _, x', _) ->
    V.equal x x'.L.pl_desc

let is_write_lvs x = List.exists (is_write_lv x)

let rec is_write_i x i =
  match i.i_desc with
  | Cassgn (lv,_,_,_) ->
    is_write_lv x lv
  | Copn(lvs,_,_,_) | Ccall(lvs, _, _) | Csyscall(lvs,_,_) ->
    is_write_lvs x lvs
  | Cif(_, c1, c2) | Cwhile(_, c1, _, _, c2) ->
    is_write_c x c1 || is_write_c x c2
  | Cfor(x',_,c) ->
    V.equal x x'.L.pl_desc || is_write_c x c

and is_write_c x c = List.exists (is_write_i x) c

let rec remove_for_i i =
  let i_desc =
    match i.i_desc with
    | Cassgn _ | Copn _ | Ccall _ | Csyscall _ -> i.i_desc
    | Cif(e, c1, c2) -> Cif(e, remove_for c1, remove_for c2)
    | Cwhile(a, c1, e, loc, c2) -> Cwhile(a, remove_for c1, e, loc, remove_for c2)
    | Cfor(j,r,c) ->
      let jd = j.pl_desc in
      if not (is_write_c jd c) then Cfor(j, r, remove_for c)
      else
        let jd' = V.clone jd in
        let j' = { j with pl_desc = jd' } in
        let ii' = Cassgn (Lvar j, E.AT_inline, jd.v_ty, Pvar (gkvar j')) in
        let ii' = { i with i_desc = ii' } in
        Cfor (j', r, ii' :: remove_for c)
  in
  { i with i_desc }
and remove_for c = List.map remove_for_i c

let ty_lval = function
  | Lnone (_, ty) -> ty
  | Lvar x -> (L.unloc x).v_ty
  | Lmem (_, ws,_,_) | Laset(_, _, ws, _, _) -> Bty (U ws)
  | Lasub (_,ws, len, _, _) -> Arr(ws, len)

module type EcExpression = sig
  val ec_cast: Env.t -> int gty * int gty -> ec_expr -> ec_expr
  val toec_cast: Env.t -> int gty * expr -> ec_expr
  val toec_expr: Env.t -> expr -> ec_expr
end

let int_of_word ws e = Papp1 (E.Oint_of_word(Unsigned, ws), e)

let int_of_ptr pd e =
   match e with
   | Papp1(E.Owi1(_, E.WIwint_of_int ws), e) when ws = pd -> e
   | _ -> int_of_word pd e

(* ------------------------------------------------------------------- *)
(* Jasmin AST -> Easycrypt AST *)
module EcExpression(EA: EcArray): EcExpression = struct
  (* ------------------------------------------------------------------- *)
  (* Extraction of expressions *)

  let ec_cast env (ty, ety) e =
      if ety = ty then e
      else
          match ty with
          | Bty _ -> ec_zeroext (ty, ety) e
          | Arr(ws, n) ->
              let wse, ne = array_kind ety in
              EA.ec_cast_array env (ws, n) (wse, ne) e

  let rec ec_op1 op e = match op with
    | E.Oword_of_int sz ->
      ec_apps1 (Format.sprintf "%s.of_int" (fmt_Wsz sz)) e
    | E.Oint_of_word(s, sz) ->
      ec_apps1 (Format.sprintf "%s.to_%sint" (fmt_Wsz sz) (string_of_signess s)) e
    | E.Osignext(szo,_szi) ->
      ec_apps1 (Format.sprintf "sigextu%i" (int_of_ws szo)) e
    | E.Ozeroext(szo,szi) -> ec_zeroext_sz (szo, szi) e
    | E.Onot     -> ec_apps1 "!" e
    | E.Olnot _  -> ec_apps1 "invw" e
    | E.Oneg _   -> ec_apps1 "-" e
    | E.Owi1 (_, WIwint_of_int sz) -> ec_op1 (E.Oword_of_int sz) e
    | E.Owi1 _ -> assert false (* other wint operator should have been removed by wint_int or wint_word *)

  let rec toec_expr env (e: expr) =
      match e with
      | Pconst z -> Econst z
      | Pbool b -> Ebool b
      | Parr_init _n -> ec_ident "witness"
      | Pvar x -> ec_vari env (L.unloc x.gv)
      | Pget (a, aa, ws, y, e) ->
          EA.toec_pget env (a, aa, ws, L.unloc y.gv, toec_expr env e)
      | Psub (aa, ws, len, x, e) -> EA.toec_psub env (aa, ws, len, x, toec_expr env e)
      | Pload (_, sz, e) ->
          let load = ec_ident (Format.sprintf "loadW%i" (int_of_ws sz)) in
          Eapp (load, [
              glob_memi; toec_expr env (int_of_ptr (Env.pd env) e)
          ])
      | Papp1 (op1, e) ->
            ec_op1 op1 (toec_cast env (Conv.ty_of_cty (fst (E.type_of_op1 op1)), e))
      | Papp2 (op2, e1, e2) ->
          let t1, t2 = fst (E.type_of_op2 op2) in
          let te1 = (Conv.ty_of_cty t1, e1) in
          let te2 = (Conv.ty_of_cty t2, e2) in
          let te1, te2 = match op2 with
            | E.Ogt _ | E.Oge _ -> te2, te1
            | _ -> te1, te2
          in
          let op = Infix (Format.asprintf "%a" fmt_op2 op2) in
          Eop2 (op, (toec_cast env te1), (toec_cast env te2))
      | PappN (op, es) ->
          begin match op with
          | Opack (ws, we) ->
              let i = int_of_pe we in
              let rec aux es =
                  match es with
                  | [] -> assert false
                  | [e] -> toec_expr env e
                  | e::es ->
                          let exp2i = Eop2 (Infix "^", Econst (Z.of_int 2), Econst (Z.of_int i)) in
                          Eop2 (
                              Infix "+",
                              Eop2 (Infix "%%", toec_expr env e, exp2i),
                              Eop2 (Infix "*", exp2i, aux es)
                              )
              in
              ec_apps1 (Format.sprintf "W%i.of_int" (int_of_ws ws)) (aux (List.rev es))
          | Ocombine_flags c ->
              Eapp (
                  ec_ident (Printer.string_of_combine_flags c),
                  List.map (toec_expr env) es
              )
          end
      | Pif(_,e1,et,ef) ->
          let ty = ty_expr e in
          Eop3 (
              Ternary,
              toec_expr env e1,
              toec_cast env (ty, et),
              toec_cast env (ty, ef)
          )

  and toec_cast env (ty, e) = ec_cast env (ty, ty_expr e) (toec_expr env e)
end

module type EcLeakage = sig
  val ec_leaks_es: Env.t -> exprs -> ec_instr list
  val ec_leaks_opn: Env.t -> exprs -> ec_instr list
  val ec_leaking_if: Env.t -> expr -> (Env.t -> ec_stmt) -> (Env.t -> ec_stmt) -> ec_stmt
  val ec_leaking_while: Env.t -> (Env.t -> ec_stmt) -> expr -> (Env.t -> ec_stmt) -> ec_stmt
  val ec_leaking_for: Env.t -> (Env.t -> ec_stmt) -> expr -> expr -> ec_stmt -> ec_expr -> ec_stmt -> ec_stmt
  val ec_leaks_lvs: Env.t -> int glval list -> ec_stmt
  val global_leakage_vars: Env.t -> (ec_modty * ec_modty) list
  val leakage_imports: Env.t -> ec_item list
  val ec_fun_leak_init: Env.t -> ec_stmt
  val ec_leak_ret: Env.t -> ec_expr list -> ec_expr list
  val ec_leak_rty: Env.t -> ec_ty list -> ec_ty list
  val ec_leak_call_lvs: Env.t -> ec_lvalues
  val ec_leak_call_acc: Env.t -> ec_stmt
end

module EcLeakNormal(EE: EcExpression): EcLeakage = struct
  let ec_leaks_es env es = []
  let ec_leaks_opn env es = []
  let ec_leaking_if env e c1 c2 = [ESif (EE.toec_expr env e, c1 env, c2 env)]
  let ec_leaking_while env c1 e c2 =
    c1 env @ [ESwhile (EE.toec_expr env e, (c2 env @ c1 env))]
  let ec_leaking_for env c e1 e2 init cond i_upd = init @ [ESwhile (cond, c env @ i_upd)]
  let ec_leaks_lvs env lvs = []
  let global_leakage_vars env = []
  let leakage_imports env = []
  let ec_fun_leak_init env = []
  let ec_leak_ret env ret = ret
  let ec_leak_rty env rtys = rtys
  let ec_leak_call_lvs env = []
  let ec_leak_call_acc env = []
end

module EcLeakConstantTimeGlobal(EE: EcExpression): EcLeakage = struct
  open EE

  let rec leaks_e_rec pd leaks e =
    match e with
    | Pconst _ | Pbool _ | Parr_init _ |Pvar _ -> leaks
    | Pload (_,_,e) -> leaks_e_rec pd (int_of_ptr pd e :: leaks) e
    | Pget (_,_,_,_, e) | Psub (_,_,_,_,e) -> leaks_e_rec pd (e::leaks) e
    | Papp1 (_, e) -> leaks_e_rec pd leaks e
    | Papp2 (_, e1, e2) -> leaks_e_rec pd (leaks_e_rec pd leaks e1) e2
    | PappN (_, es) -> leaks_es_rec pd leaks es
    | Pif  (_, e1, e2, e3) -> leaks_e_rec pd (leaks_e_rec pd (leaks_e_rec pd leaks e1) e2) e3
  and leaks_es_rec pd leaks es = List.fold_left (leaks_e_rec pd) leaks es

  let leaks_e pd e = leaks_e_rec pd [] e
  let leaks_es pd es = leaks_es_rec pd [] es

  let ece_leaks_e env e = List.map (toec_expr env) (leaks_e (Env.pd env) e)

  let ec_newleaks leaks =
      let add_leak lacc l = Eop2 (Infix "::", l, lacc) in
      List.fold_left add_leak (ec_ident "leakages") leaks

  let ec_addleaks leaks = [ESasgn ([LvIdent ["leakages"]], ec_newleaks leaks)]

  let ec_leaks = function
    | [] -> []
    | es -> ec_addleaks [Eapp (ec_ident "LeakAddr", [Elist es])]

  let ec_leaks_es env es = ec_leaks (List.map (toec_expr env) (leaks_es (Env.pd env) es))

  let ec_leaks_opn env es =  ec_leaks_es env es

  let leak_cond env e = ec_addleaks [
    Eapp (ec_ident "LeakAddr", [Elist (ece_leaks_e env e)]);
    Eapp (ec_ident "LeakCond", [toec_expr env e])
  ]

  let ec_leaking_if env e c1 c2 =
    leak_cond env e @ [ESif (EE.toec_expr env e, c1 env, c2 env)]

  let ec_leaking_while env c1 e c2 =
    let le = leak_cond env e in
    c1 env @ le @ [ESwhile (EE.toec_expr env e, (c2 env @ c1 env @ le))]

  let ec_leaking_for env c e1 e2 init cond i_upd =
    let leaks = List.map (toec_expr env) (leaks_es (Env.pd env) [e1;e2]) in
    ec_addleaks [
        Eapp (ec_ident "LeakAddr", [Elist leaks]);
        Eapp (ec_ident "LeakFor", [Etuple [toec_expr env e1; toec_expr env e2]])
        ] @
    init @
    [ESwhile (cond, c env @ i_upd)]

  let leaks_lval pd = function
    | Lnone _ | Lvar _ -> []
    | Laset (_,_,_,_, e) | Lasub (_,_,_,_,e) -> leaks_e_rec pd [e] e
    | Lmem (_, _, _,e) -> leaks_e_rec pd [int_of_ptr pd e] e

  let ec_leaks_lv env lv = ec_leaks (List.map (toec_expr env) (leaks_lval (Env.pd env) lv))

  let ec_leaks_lvs env lvs = List.concat_map (ec_leaks_lv env) lvs

  let global_leakage_vars env = [("leakages", "leakages_glob_t")]

  let leakage_imports env = [IfromRequireImport ("Jasmin", ["JLeakage"])]

  let ec_fun_leak_init env = []

  let ec_leak_ret env ret = ret

  let ec_leak_rty env rtys = rtys

  let ec_leak_call_lvs env = []

  let ec_leak_call_acc env = []
end

module EcLeakConstantTime(EE: EcExpression): EcLeakage = struct
  open EE

  let asgn s e = ESasgn ([LvIdent [s]], e)

  let int_of_word ws e = Papp1 (E.Oint_of_word(Unsigned, ws), e)

  let leak_addr e = Eapp (ec_ident "Leak_int", [e])

  let leak_val env e =
    let sty = match ty_expr e with
    | Bty Bool -> "bool"
    | Bty Int  -> "int"
    | Bty (U ws) -> fmt_Wsz ws
    | Arr(ws, n) -> assert false
    in
    let leakf = ec_ident (Format.sprintf "Leak_%s" sty) in
    [Eapp (leakf, [toec_expr env e])]


  let leak_addr_mem env e =
    let addr = int_of_ptr (Env.pd env) e in
    [leak_addr (toec_expr env addr)]

  let rec leaks_e_rec env leaks e =
    match e with
    | Pconst _ | Pbool _ | Parr_init _ | Pvar _ -> leaks
    | Pload (_,_,e) -> leaks_e_rec env ((leak_addr_mem env e) @ leaks) e
    | Pget (_,_,_,_, e) | Psub (_,_,_,_,e) -> leaks_e_rec env ([leak_addr (toec_expr env e)] @ leaks) e
    | Papp1 (_, e) -> leaks_e_rec env leaks e
    | Papp2 (_, e1, e2) -> leaks_es_rec env leaks [e1; e2]
    | PappN (_, es) -> leaks_es_rec env leaks es
    | Pif  (_, e1, e2, e3) -> leaks_es_rec env leaks [e1; e2; e3]

  and leaks_es_rec env leaks es = List.fold_left (leaks_e_rec env) leaks es

  let leaks_e env e = leaks_e_rec env [] e

  let leaks_es env es = leaks_es_rec env [] es

  let leaklist leaks = Eapp (Eident ["LeakList"], [Elist leaks])

  let leaklistv leakv = Eapp (Eident ["LeakList"], [Eident [leakv]])

  let reset_leak vleak = [asgn vleak (Elist [])]

  let leakv_ty = "JLeakage.leakages"
  let leakacc_prefix = "leak"

  let start_leakacc env = reset_leak (Env.create_aux env leakacc_prefix leakv_ty)

  let leakacc env = Env.reuse_aux env leakacc_prefix leakv_ty

  let push_leak leakv leak =
    [asgn leakv (Eop2 (Infix "++", Eident [leakv], Elist [leak]))]

  let leak_block env c acc =
    let env_block = Env.new_aux_range env in
    let leak_reset = start_leakacc env_block in
    leak_reset @ (c env_block) @ (push_leak acc (leaklistv (leakacc env_block)))

  let ec_addleaks env leaks = match leaks with
    | [] -> []
    | _ -> push_leak (leakacc env) (leaklist leaks)

  let ec_leaks_es env es = ec_addleaks env (leaks_es env es)

  let leaks_lval env = function
    | Lnone _ | Lvar _ -> []
    | Laset (_,_,_,_, e) | Lasub (_,_,_,_,e) -> leaks_e_rec env [leak_addr (toec_expr env e)] e
    | Lmem (_, _, _,e) -> leaks_e_rec env (leak_addr_mem env e) e

  let ec_leaks_lv env lv = ec_addleaks env (leaks_lval env lv)

  let ec_leaks_lvs env lvs = List.concat_map (ec_leaks_lv env) lvs

  let ec_leaks_opn env es = ec_addleaks env (leaks_es env es)

  let leak_cond env e = (leaks_e env e) @ (leak_val env e)

  let ec_leaking_if env e c1 c2 =
    let acc = leakacc env in
    ec_addleaks env (leak_cond env e) @
    [ESif (toec_expr env e, leak_block env c1 acc, leak_block env c2 acc)]

  let ec_leaking_while env c1 e c2 =
    let env = Env.new_aux_range env in
    let vleak_cond = Env.create_aux env "leak_cond" leakv_ty in
    (* We don't use leak_block since we need to check if c1 is empty. *)
    let env_c1 = Env.new_aux_range env in
    let c1 = c1 env_c1 in
    let (leaking_c1, reset_c1_leak, c1_leaklist) = if c1 = [] then
      ([], [], [])
    else
      let leak_c1 = Env.create_aux env "leak_b1" leakv_ty in
      let leak_start_c1 = start_leakacc env_c1 in
      (
        leak_start_c1 @ c1 @ push_leak leak_c1 (leaklistv (leakacc env_c1)),
        reset_leak leak_c1,
        [leaklistv leak_c1]
      )
    in
    let leak_c2 = Env.create_aux env (if c1 = [] then "_b" else "_b2") leakv_ty in
    let leaking_c2 = leak_block env c2 leak_c2 in
    let reset_c2_leak = reset_leak leak_c2 in
    reset_leak vleak_cond @ reset_c1_leak @ reset_c2_leak @
    leaking_c1 @
    push_leak vleak_cond (leaklist (leak_cond env e)) @
    [ESwhile (
      toec_expr env e,
      leaking_c2 @ leaking_c1 @ push_leak vleak_cond (leaklist (leak_cond env e))
    )] @
    push_leak (leakacc env) (leaklist (c1_leaklist @ [leaklistv vleak_cond; leaklistv leak_c2]))

  let leak_for_bounds env e1 e2 =
    leaks_es env [e1; e2] @ leak_val env e1 @ leak_val env e2

  let ec_leaking_for env c e1 e2 init cond i_upd =
    let leak_c = Env.create_aux env "leak_b" leakv_ty in
    reset_leak leak_c @
    ec_addleaks env (leak_for_bounds env e1 e2) @
    init @
    [ESwhile (cond, leak_block env c leak_c @ i_upd)] @
    push_leak (leakacc env) (leaklistv leak_c)

  let global_leakage_vars env = []

  let leakage_imports env = [IfromRequireImport ("Jasmin", ["JLeakage"])]

  let ec_fun_leak_init env = start_leakacc env

  let ec_leak_ret env ret =
    (env |> leakacc |> leaklistv) :: ret

  let leak_ret_ty = "JLeakage.leakage"
  let leak_ret_prefix = "leak_c"

  let ec_leak_rty env rtys = leak_ret_ty :: rtys

  let ec_leak_call_lvs env = [LvIdent [Env.create_aux env leak_ret_prefix leak_ret_ty]]

  let ec_leak_call_acc env =
    push_leak (leakacc env) (ec_ident (Env.reuse_aux env leak_ret_prefix leak_ret_ty))
end


module Extraction
  (EA: EcArray)
  (EL: EcLeakage) =
struct
  open EcExpression(EA)
  open EL
  (* ------------------------------------------------------------------- *)
  (* Extraction of lvals *)

  let ec_lvals env xs =
    let ec_lval env = function
      | Lnone _ | Lmem _ | Laset _ | Lasub _ -> assert false
      | Lvar x  -> LvIdent [ec_vars env (L.unloc x)]
    in
    List.map (ec_lval env) xs

  let toec_lval1 env lv e =
      match lv with
      | Lnone _ -> assert false
      | Lmem(_, ws, _, e1) ->
        let storewi = ec_ident (Format.sprintf "storeW%i" (int_of_ws ws)) in
        let addr = toec_expr env (int_of_ptr (Env.pd env) e1) in
        ESasgn ([LvIdent glob_mem], Eapp (storewi, [glob_memi; addr; e]))
      | Lvar x  ->
        let lvid = [ec_vars env (L.unloc x)] in
        ESasgn ([LvIdent lvid], e)
      | Laset (_, aa, ws, x, e1) ->
        let e1 = toec_expr env e1 in
        EA.toec_laset env (aa, ws, L.unloc x, e1) e
      | Lasub (aa, ws, len, x, e1) ->
        ESasgn (
          [LvIdent [ec_vars env (L.unloc x)]],
          EA.toec_lasub env (aa, ws, len, x, toec_expr env e1) e
          )

  let lvals_are_vars lvs = List.for_all (function Lvar _ -> true | _ -> false) lvs

  (* ------------------------------------------------------------------- *)
  (* Instruction extraction *)

  let toec_ty = toec_ty EA.onarray_ty

  let add_ty env = function
    | Bty _ -> ()
    | Arr (ws, n) -> EA.add_arr env ws n


  let ec_assgn env lv (etyo, etyi) e =
      let e = e |> ec_zeroext (etyo, etyi) |> ec_cast env (ty_lval lv, etyo) in
      toec_lval1 env lv e

  let ec_assgn_f env lvs etyso etysi f =
    let stmt = if lvals_are_vars lvs && (List.map ty_lval lvs) = etyso && etyso = etysi then
      [f (ec_lvals env lvs)]
      else
      let ec_typs = (List.map (toec_ty env) etysi) in
      let env = Env.new_aux_range env in
      let auxs = List.map (Env.create_aux env "aux") ec_typs in
      let s2lv s = LvIdent [s] in
      let call = f (List.map s2lv auxs) in
      let ec_auxs = List.map ec_ident auxs in
      let assgn lv (ets, e) = ec_assgn env lv ets e in
      let tyauxs = List.combine (List.combine etyso etysi) ec_auxs in
      let assgn_auxs = List.map2 assgn lvs tyauxs in
      call :: assgn_auxs
    in
    (ec_leaks_lvs env lvs) @ stmt

  let ec_pcall env lvs leak_lvs otys f args =
    if lvals_are_vars lvs && (List.map ty_lval lvs) = otys then
      (ec_leaks_lvs env lvs) @ [EScall (leak_lvs @ ec_lvals env lvs, f, args)]
    else
      ec_assgn_f env lvs otys otys (fun lvals -> EScall (leak_lvs @ lvals, f, args))

  let ec_expr_assgn env lvs etyso etysi e =
    if lvals_are_vars lvs && (List.map ty_lval lvs) = etyso && etyso = etysi then
      (ec_leaks_lvs env lvs) @ [ESasgn (ec_lvals env lvs, e)]
    else if List.length lvs = 1 then
      (ec_leaks_lvs env lvs) @ [ec_assgn env (List.hd lvs) (List.hd etyso, List.hd etysi) e]
    else
      ec_assgn_f env lvs etyso etysi (fun lvals -> ESasgn (lvals, e))

  let ec_syscall env o =
    match o with
    | Syscall_t.RandomBytes p ->
      let n = (Conv.int_of_pos p) in
      Env.add_randombytes env n;
      Format.sprintf "%s.randombytes_%i" syscall_mod_arg n

  let ec_opn pd asmOp o =
    let s = Format.asprintf "%a" (pp_opn pd asmOp) o in
    if Ss.mem s keywords then s^"_" else s

  let rec toec_cmd asmOp env c = List.flatten (List.map (toec_instr asmOp env) c)

  and toec_instr asmOp env i =
      match i.i_desc with
      | Cassgn (lv, _, _, (Parr_init _ as e)) ->
          (ec_leaks_es env [e]) @
          [toec_lval1 env lv (ec_ident "witness")]
      | Cassgn (lv, _, _, e) ->
          let tys = [ty_expr e] in
          (ec_leaks_es env [e]) @
          ec_expr_assgn env [lv] tys tys (toec_expr env e)
      | Copn ([], _, op, es) ->
          (ec_leaks_opn env es) @
          [EScomment (Format.sprintf "Erased call to %s" (ec_opn (Env.pd env) asmOp op))]
      | Copn (lvs, _, op, es) ->
          let op' = base_op op in
          (* Since we do not have merge for the moment only the output type can change *)
          let otys,itys = ty_sopn (Env.pd env) asmOp op es in
          let otys', _ = ty_sopn (Env.pd env) asmOp op' es in
          let ec_op op = ec_ident (ec_opn (Env.pd env) asmOp op) in
          let ec_e op = Eapp (ec_op op, List.map (toec_cast env) (List.combine itys es)) in
          (ec_leaks_opn env es) @
          (ec_expr_assgn env lvs otys otys' (ec_e op'))
      | Ccall (lvs, f, es) ->
          let env = Env.new_aux_range env in
          let otys, itys = Env.get_funtype env f in
          let args = List.map (toec_cast env) (List.combine itys es) in
          let leak_lvs = ec_leak_call_lvs env in
          (ec_leaks_es env es) @
          (ec_pcall env lvs leak_lvs otys [Env.get_funname env f] args) @
          (ec_leak_call_acc env)
      | Csyscall (lvs, o, es) ->
          let s = Syscall.syscall_sig_u o in
          let otys = List.map Conv.ty_of_cty s.scs_tout in
          let itys =  List.map Conv.ty_of_cty s.scs_tin in
          let args = List.map (toec_cast env) (List.combine itys es) in
          (ec_leaks_es env es) @
          (ec_pcall env lvs [] otys [ec_syscall env o] args)
      | Cif (e, c1, c2) ->
          let c1 env = toec_cmd asmOp env c1 in
          let c2 env = toec_cmd asmOp env c2 in
          ec_leaking_if env e c1 c2
      | Cwhile (_, c1, e, _, c2) ->
          let c1 env = toec_cmd asmOp env c1 in
          let c2 env = toec_cmd asmOp env c2 in
          ec_leaking_while env c1 e c2
      | Cfor (i, (d,e1,e2), c) ->
          let env = Env.new_aux_range env in
          (* decreasing for loops have bounds swaped *)
          let e1, e2 = if d = UpTo then e1, e2 else e2, e1 in
          let init, ec_e2 =
              match e2 with
              (* Can be generalized to the case where e2 is not modified by c and i *)
              | Pconst _ -> ([], toec_expr env e2)
              | _ ->
                  let aux = Env.create_aux env "inc" "int" in
                  let init = ESasgn ([LvIdent [aux]], toec_expr env e2) in
                  let ec_e2 = ec_ident aux in
                  [init], ec_e2 in
          let ec_i = [ec_vars env (L.unloc i)] in
          let lv_i = [LvIdent ec_i] in
          let init  = init @ [ESasgn (lv_i, toec_expr env e1)] in
          let ec_i1, ec_i2 =
              if d = UpTo then Eident ec_i , ec_e2
              else ec_e2, Eident ec_i in
          let i_upd_op = Infix (if d = UpTo then "+" else "-") in
          let i_upd = [ESasgn (lv_i, Eop2 (i_upd_op, Eident ec_i, Econst (Z.of_int 1)))] in
          let c env = toec_cmd asmOp env c in
          let cond = Eop2 (Infix "<", ec_i1, ec_i2) in
          ec_leaking_for env c e1 e2 init cond i_upd

  (* ------------------------------------------------------------------- *)
  (* Function extraction *)

  let var2ec_var env x = (List.hd [ec_vars env x], toec_ty env x.v_ty)

  let toec_fun asmOp env f =
      let f = { f with f_body = remove_for f.f_body } in
      let locals = Sv.elements (locals f) in
      let env = List.fold_left Env.set_var env (f.f_args @ locals) in
      (* Limit the scope of changes for aux variables to the current function. *)
      let env = Env.new_fun env in
      let init = ec_fun_leak_init env in
      let stmts = init @ (toec_cmd asmOp env f.f_body) in
      let ec_locals = (Env.aux_vars env) @ (List.map (var2ec_var env) locals) in
      let aux_locals_init = locals
          |> List.filter (fun x -> match x.v_ty with Arr _ -> true | _ -> false)
          |> List.sort (fun x1 x2 -> compare x1.v_name x2.v_name)
          |> List.map (fun x -> ESasgn ([LvIdent [ec_vars env x]], ec_ident "witness"))
      in
      let ret =
          let ec_var x = ec_vari env (L.unloc x) in
          match ec_leak_ret env (List.map ec_var f.f_ret) with
          | [x] -> ESreturn x
          | xs -> ESreturn (Etuple xs)
      in
      List.iter (Env.add_ty env) f.f_tyout;
      List.iter (fun x -> Env.add_ty env x.v_ty) (f.f_args @ locals);
      {
          decl = {
              fname = (Env.get_funname env f.f_name);
              args = List.map (var2ec_var env) f.f_args;
              rtys = ec_leak_rty env (List.map (toec_ty env) f.f_tyout);
          };
          locals = ec_locals;
          stmt = aux_locals_init @ stmts @ [ret];
      }

  (* ------------------------------------------------------------------- *)
  (* Program extraction *)

  let add_glob_arrsz env (x,d) =
    match d with
    | Global.Gword _ -> ()
    | Global.Garr(p,t) ->
      let ws, t = Conv.to_array x.v_ty p t in
      let n = Array.length t in
      Env.add_jarray env ws n

  let jmodel env = match Env.arch env with
    | X86_64 -> "JModel_x86"
    | ARM_M4 -> "JModel_m4"
    | RISCV  -> "JModel_riscv"

  let lib_slh env = match Env.arch env with
    | X86_64 -> "SLH64"
    | ARM_M4 -> "SLH32"
    | RISCV  -> "SLH32"

  let ec_glob_decl env (x,d) =
    let w_of_z ws z = Eapp (Eident [fmt_Wsz ws; "of_int"], [Econst z]) in
    let mk_abbrev e = Iabbrev (ec_vars env x, e) in
    match d with
    | Global.Gword(ws, w) -> mk_abbrev (w_of_z ws (Conv.z_of_word ws w))
    | Global.Garr(p,t) ->
      let ws, t = Conv.to_array x.v_ty p t in
      mk_abbrev (Eapp (EA.of_list env ws (Array.length t),
                       [Elist (List.map (w_of_z ws) (Array.to_list t))]))

  let ec_randombytes env =
      let randombytes_decl a n =
          let arr_ty = toec_ty env (Arr (U8, n)) in
          {
              fname = Format.sprintf "randombytes_%i" n;
              args = [(a, arr_ty)];
              rtys = [arr_ty];
          }
      in
      let randombytes_f n =
        let dmap = EA.ec_darray8 env n in
        { decl = randombytes_decl "a" n
        ; locals = []
        ; stmt = [ESsample ([LvIdent ["a"]], dmap); ESreturn (ec_ident "a")]
        }
      in
      let randombytes = Env.randombytes env in
      if List.is_empty randombytes then
        []
      else
        [
          ImoduleType {
            name = syscall_mod_sig;
              funs = List.map (randombytes_decl "_") randombytes;
          };
          Imodule {
            name = syscall_mod;
              params = [];
              ty = Some syscall_mod_sig;
              vars = [];
              funs = List.map randombytes_f randombytes;
          }
        ]

  let toec_prog env asmOp globs funcs =
      let add_glob_env env (x, d) =
        add_glob_arrsz env (x, d);
        Env.set_var env x
      in
      let add_arrsz env f =
        let add env x =
          match x.v_ty with
          | Arr(ws, n) -> EA.add_jarray env ws n
          | _ -> ()
        in
        let vars = vars_fc f in
        Sv.iter (add env) vars
      in
      let env = List.fold_left Env.set_fun env funcs in
      let env = List.fold_left add_glob_env env globs in
      List.iter (add_arrsz env) funcs;

      let funs = List.map (toec_fun asmOp env) funcs in

      let pp_array_theories ats = match Sarraytheory.elements ats with
          | [] -> []
          | l -> [IrequireImport (List.map fmt_array_theory l)]
      in
      let mod_arg =
          if List.is_empty (Env.randombytes env) then []
          else [(syscall_mod_arg, syscall_mod_sig)]
      in
      let glob_imports = [
          IrequireImport ["AllCore"; "IntDiv"; "CoreMap"; "List"; "Distr"];
          IfromRequireImport ("Jasmin", [jmodel env]);
          Iimport [lib_slh env];
      ] in
      let top_mod = Imodule {
          name = "M";
          params = mod_arg;
          ty = None;
          vars = global_leakage_vars env;
          funs;
      } in
      glob_imports @
      (leakage_imports env) @
      pp_array_theories (Env.array_theories env) @
      (List.map (fun glob -> ec_glob_decl env glob) globs) @
      (ec_randombytes env) @
      [top_mod]

  let pp_prog env asmOp fmt globs funcs =
    Format.fprintf fmt "%a@." pp_ec_prog (toec_prog env asmOp globs funcs)

end

(* ------------------------------------------------------------------- *)
(* Program extraction: find used functions and setup env data. *)

let rec used_func f =
  used_func_c Ss.empty f.f_body

and used_func_c used c =
  List.fold_left used_func_i used c

and used_func_i used i =
  match i.i_desc with
  | Cassgn _ | Copn _ | Csyscall _ -> used
  | Cif (_,c1,c2)     -> used_func_c (used_func_c used c1) c2
  | Cfor(_,_,c)       -> used_func_c used c
  | Cwhile(_, c1, _, _, c2) -> used_func_c (used_func_c used c1) c2
  | Ccall (_,f,_)   -> Ss.add f.fn_name used

let extract ((globs,funcs):('info, 'asm) prog) arch pd asmOp (model: model) amodel fnames array_dir fmt =
  let save_array_theories array_theories =
    match array_dir with
    | Some prefix ->
        begin
          Sarraytheory.iter (save_array_theory ~prefix) array_theories
    end
    | None -> ()
  in
  let fnames =
    match fnames with
    | [] -> List.map (fun { f_name ; _ } -> f_name.fn_name) funcs
    | fnames -> fnames
  in
  let funcs = List.map Regalloc.fill_in_missing_names funcs in
  let tokeep = ref (Ss.of_list fnames) in
  let dofun f =
    if Ss.mem f.f_name.fn_name !tokeep then
      (tokeep := Ss.union (used_func f) !tokeep; true)
    else false in
  let funcs = List.rev (List.filter dofun funcs) in
  let array_theories = ref Sarraytheory.empty in
  let env = Env.empty arch pd array_theories in
  let module EA: EcArray = (val match amodel with
    | ArrayOld -> (module EcArrayOld: EcArray)
    | WArray   -> (module EcWArray  : EcArray)
    | BArray   -> (module EcBArray  : EcArray)
  ) in
  let module EE = EcExpression(EA) in
  let module EL: EcLeakage = (val match model with
    | Normal -> (module EcLeakNormal(EE): EcLeakage)
    | ConstantTime -> (module EcLeakConstantTime(EE): EcLeakage)
    | ConstantTimeGlobal ->
        warning Deprecated Location.i_dummy
          "EasyCrypt extraction for constant-time in CTG mode is deprecated. Use the CT mode instead.";
        (module EcLeakConstantTimeGlobal(EE): EcLeakage)
  ) in
  let module E = Extraction(EA)(EL) in
  let prog = E.pp_prog env asmOp fmt globs funcs in
  save_array_theories (Env.array_theories env);
  prog