package jasmin

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Module Sv.Raw

type tree =
  1. | Leaf
  2. | Node of Int.Z_as_Int.t * tree * Eqtype.Equality.sort * tree
val empty : tree
val is_empty : tree -> bool
val mem : Eqtype.Equality.sort -> tree -> bool
val min_elt : tree -> elt option
val max_elt : tree -> elt option
val choose : tree -> elt option
val fold : (elt -> 'a1 -> 'a1) -> tree -> 'a1 -> 'a1
val elements_aux : Eqtype.Equality.sort list -> tree -> Eqtype.Equality.sort list
val elements : tree -> Eqtype.Equality.sort list
val rev_elements_aux : Eqtype.Equality.sort list -> tree -> Eqtype.Equality.sort list
val rev_elements : tree -> Eqtype.Equality.sort list
val cardinal : tree -> Datatypes.nat
val maxdepth : tree -> Datatypes.nat
val mindepth : tree -> Datatypes.nat
val for_all : (elt -> bool) -> tree -> bool
val exists_ : (elt -> bool) -> tree -> bool
type enumeration =
  1. | End
  2. | More of elt * tree * enumeration
val cons : tree -> enumeration -> enumeration
val compare_end : enumeration -> Datatypes.comparison
val compare : tree -> tree -> Datatypes.comparison
val equal : tree -> tree -> bool
val subsetl : (tree -> bool) -> Eqtype.Equality.sort -> tree -> bool
val subsetr : (tree -> bool) -> Eqtype.Equality.sort -> tree -> bool
val subset : tree -> tree -> bool
type t = tree
val height : t -> Int.Z_as_Int.t
val singleton : Eqtype.Equality.sort -> tree
val create : t -> Eqtype.Equality.sort -> t -> tree
val assert_false : t -> Eqtype.Equality.sort -> t -> tree
val bal : t -> Eqtype.Equality.sort -> t -> tree
val join : tree -> elt -> t -> t
val remove_min : tree -> elt -> t -> t * elt
val merge : tree -> tree -> tree
val remove : Eqtype.Equality.sort -> tree -> tree
val concat : tree -> tree -> tree
type triple = {
  1. t_left : t;
  2. t_in : bool;
  3. t_right : t;
}
val t_left : triple -> t
val t_in : triple -> bool
val t_right : triple -> t
val split : Eqtype.Equality.sort -> tree -> triple
val inter : tree -> tree -> tree
val diff : tree -> tree -> tree
val union : tree -> tree -> tree
val filter : (elt -> bool) -> tree -> tree
val partition : (elt -> bool) -> t -> t * t
val ltb_tree : Eqtype.Equality.sort -> tree -> bool
val gtb_tree : Eqtype.Equality.sort -> tree -> bool
val isok : tree -> bool
module MX : sig ... end
module L : sig ... end
val flatten_e : enumeration -> elt list
type coq_R_remove_min =
  1. | R_remove_min_0 of tree * elt * t
  2. | R_remove_min_1 of tree * elt * t * Int.Z_as_Int.t * tree * Eqtype.Equality.sort * tree * t * elt * coq_R_remove_min * t * elt
type coq_R_merge =
  1. | R_merge_0 of tree * tree
  2. | R_merge_1 of tree * tree * Int.Z_as_Int.t * tree * Eqtype.Equality.sort * tree
  3. | R_merge_2 of tree * tree * Int.Z_as_Int.t * tree * Eqtype.Equality.sort * tree * Int.Z_as_Int.t * tree * Eqtype.Equality.sort * tree * t * elt
type coq_R_concat =
  1. | R_concat_0 of tree * tree
  2. | R_concat_1 of tree * tree * Int.Z_as_Int.t * tree * Eqtype.Equality.sort * tree
  3. | R_concat_2 of tree * tree * Int.Z_as_Int.t * tree * Eqtype.Equality.sort * tree * Int.Z_as_Int.t * tree * Eqtype.Equality.sort * tree * t * elt
type coq_R_union =
  1. | R_union_0 of tree * tree
  2. | R_union_1 of tree * tree * Int.Z_as_Int.t * tree * Eqtype.Equality.sort * tree
  3. | R_union_2 of tree * tree * Int.Z_as_Int.t * tree * Eqtype.Equality.sort * tree * Int.Z_as_Int.t * tree * Eqtype.Equality.sort * tree * t * bool * t * tree * coq_R_union * tree * coq_R_union