package core_kernel

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
  • deprecated [since 2018-03] Use Core_kernel directly instead

Core_kernel greatly expands the functionality available in Base while still remaining platform-agnostic. Core_kernel changes more frequently (i.e., is less stable) than Base.

Some modules are mere extensions of their counterparts in Base, usually adding generic functionality by including functors that make them binable, comparable, sexpable, blitable, etc. The bulk of Core_kernel, though, is modules providing entirely new functionality.

It is broken in two pieces, Std_kernel and Std, where the first includes modules that aren't overridden by Core, and the second defines modules that are.

Std_kernel

Std_kernel defines modules exposed by Core_kernel that are not overridden by Core. It is used in core.ml to re-export these modules.

Modules imported from Base without modification

module Applicative : sig ... end
module Avltree : sig ... end
module Backtrace : sig ... end
module Bin_prot : sig ... end
module Commutative_group : sig ... end
module Comparisons : sig ... end
module Equal : sig ... end
module Exn : sig ... end
module Expect_test_config = Expect_test_config
module Field : sig ... end
module Floatable : sig ... end
module Hash : sig ... end
module Heap_block : sig ... end
module In_channel : sig ... end
module Int_conversions : sig ... end
module Invariant : sig ... end
module Monad : sig ... end
module Obj_array : sig ... end
module Ordered_collection_common : sig ... end

This module extends Base.Ordered_collection_common.

module Out_channel : sig ... end
module Poly : sig ... end
module Polymorphic_compare : sig ... end
module Pretty_printer : sig ... end
module Random : sig ... end
module Sexp_maybe = Sexp.Sexp_maybe
module Staged : sig ... end
module Stringable : sig ... end
module Validate : sig ... end
module With_return : sig ... end
module Word_size : sig ... end

Modules that extend Base

module Array : sig ... end

This module extends Base.Array.

module Binary_searchable : sig ... end

This module extends the Base.Binary_searchable module.

module Blit : sig ... end

This module extends Base.Blit.

module Bool : sig ... end

This module extends Base.Bool.

module Bytes : sig ... end

This module extends Base.Bytes.

module Char : sig ... end

This module extends Base.Char, adding Identifiable for making char identifiers and Quickcheckable to facilitate automated testing with pseudorandom data.

module Comparable : sig ... end

Comparable extends Base.Comparable and provides functions for comparing like types.

module Comparator : sig ... end

Extends Base.Comparator, providing a type-indexed value that allows you to compare values of that type.

module Container : sig ... end

Provides generic signatures for container data structures.

module Either : sig ... end

This module extends Base.Either.

module Error : sig ... end

This module extends Base.Error with bin_io.

module Float : sig ... end

Floating-point numbers.

module Fn : sig ... end
module Hash_set : sig ... end

A mutable set of elements.

module Hashtbl : sig ... end
module Hashtbl_intf : sig ... end
module Info : sig ... end

This module extends Base.Info, which provides a type for info-level debug messages.

module Int : sig ... end

This module extends Base.Int.

module Int_intf : sig ... end
module Int32 : sig ... end

This module extends Base.Int32.

module Int63 : sig ... end

This module extends Base.Int63.

module Int64 : sig ... end

This module extends Base.Int64.

module Lazy : sig ... end

This module extends Base.Lazy.

module Linked_queue : sig ... end

This module extends the Base.Queue module with bin_io support. As a reminder, the Base.Queue module is a wrapper around OCaml's standard Queue module that follows Base idioms and adds some functions.

module List : sig ... end

This module extends Base.List with bin_io and quickcheck.

module Maybe_bound : sig ... end

This module extends Base.Maybe_bound with bin_io and with compare functions in the form of As_lower_bound and As_upper_bound modules.

module Nativeint : sig ... end

This module extends Base.Nativeint.

module Option : sig ... end

This module extends Base.Option with bin_io and quickcheck.

module Ordering : sig ... end

Extends Base.Ordering, intended to make code that matches on the result of a comparison more concise and easier to read.

module Or_error : sig ... end

This module extends Base.Or_error with bin_io.

module Printf : sig ... end
module Ref : sig ... end

This module extends Base.Ref.

module Result : sig ... end

This module extends Base.Result.

module Sequence : sig ... end

This module extends Base.Sequence with bin_io.

module Set : sig ... end

This module defines the Set module for Core. Functions that construct a set take as an argument the comparator for the element type.

module Sexp : sig ... end

Code for managing s-expressions.

module Sexpable : sig ... end

This module extends Base.Sexpable.

module Sign : sig ... end

This module extends Base.Sign with bin_io.

module Source_code_position : sig ... end

This module extends Base.source_code_position.

module String : sig ... end

This module extends Base.String.

module Type_equal : sig ... end

This module extends Base.Type_equal.

module Unit : sig ... end

Module for the type unit, extended from Base.Unit. This is mostly useful for building functor arguments.

Modules added by Core_kernel

module Arg : sig ... end

INRIA's original command-line parsing library.

module Bag : sig ... end

Imperative set-like data structure.

module Bigsubstring : sig ... end

Substring type based on Bigarray, for use in I/O and C-bindings

module Binable : sig ... end

Module types and utilities for dealing with types that support the bin-io binary encoding.

module Binary_packing : sig ... end

Packs and unpacks various types of integers into and from strings.

module Blang : sig ... end

Boolean expressions.

module Bounded_index : sig ... end

Bounded_index creates unique index types with explicit bounds and human-readable labels. "(thing 2 of 0 to 4)" refers to a 0-based index for the third element of five with the label "thing", whereas a 1-based index for the second element of twelve with the label "item" renders as "(item 2 of 1 to 12)", even though both represent the index 2.

module Bounded_int_table : sig ... end

A Bounded_int_table is a table whose keys can be mapped to integers in a fixed range, 0 ... num_keys - 1, where num_keys is specified at table-creation time. The purpose of Bounded_int_table is to be faster than Hashtbl in situations where one is willing to pay a space cost for the speed.

module Bucket : sig ... end
module Bus : sig ... end

A Bus is a publisher/subscriber system within the memory space of the program. A bus has a mutable set of subscribers, which can be modified using subscribe_exn and unsubscribe.

module Byte_units : sig ... end

Conversions between units of measure that are based on bytes (like kilobytes, megabytes, gigabytes, and words).

module Day_of_week : sig ... end

Provides a variant type for days of the week (Mon, Tue, etc.) and convenience functions for converting these days into other formats, like seconds since the epoch.

module Debug : sig ... end

Utilities for printing debug messages.

module Deque : sig ... end

A double-ended queue that can shrink and expand on both ends.

module Deriving_hash : sig ... end

Generates hash functions from type expressions and definitions.

module Doubly_linked : sig ... end

Doubly-linked lists.

module Ephemeron : sig ... end

An ephemeron is a pair of pointers, one to a "key" and one to "data".

module Fdeque : sig ... end

A simple polymorphic functional double-ended queue. Use this if you need a queue-like data structure that provides enqueue and dequeue accessors on both ends. For strictly first-in, first-out access, see Fqueue.

module Fheap : sig ... end

Functional heaps (implemented as pairing heaps).

module Flags : sig ... end

An alias to the Float.t type that causes the sexp and bin-io serializers to fail when provided with nan or infinity.

module Force_once : sig ... end

A "force_once" is a thunk that can only be forced once. Subsequent forces will raise an exception.

module Fqueue : sig ... end

A simple polymorphic functional queue. Use this data structure for strictly first-in, first-out access to a sequence of values. For a similar data structure with enqueue and dequeue accessors on both ends of a sequence, see Core_kernel.Fdeque.

module Gc : sig ... end

This is a wrapper around INRIA's standard Gc module. Provides memory management control and statistics, and finalized values.

module Hash_heap : sig ... end
module Hash_queue : sig ... end
module Hashable : sig ... end
module Heap : sig ... end

Heap implementation based on a pairing-heap.

module Hexdump : sig ... end
module Hexdump_intf : sig ... end
module Host_and_port : sig ... end

Type for the commonly-used notion of host and port in networking.

module Identifiable : sig ... end

A signature for identifier types.

module Immediate_option : sig ... end
module Immediate_option_intf : sig ... end
module Int_set : sig ... end

An implementation of compressed integer sets using lists of integer ranges. Operations such as adding and membership are O(n) where n is the number of contiguous ranges in the set. For data that is mostly serial, n should remain very small.

module Interfaces : sig ... end
module Limiter : sig ... end

Implements a token-bucket-based throttling rate limiter. This module is useful for limiting network clients to a sensible query rate, or in any case where you have jobs that consume a scarce but replenishable resource.

module Linked_stack : sig ... end

A stack implemented with a list.

module Map : sig ... end

Map is a functional data structure (balanced binary tree) implementing finite maps over a totally-ordered domain, called a "key".

module Memo : sig ... end

Non-re-entrant memoization.

module Month : sig ... end

Provides a variant type for representing months (e.g., Jan, Feb, or Nov) and functions for converting them to other formats (like an int).

module Moption : sig ... end

A Moption is a mutable option, like 'a option ref, but with a more efficient implementation; in particular, set_some does not allocate.

module No_polymorphic_compare : sig ... end

Open this in modules where you don't want to accidentally use polymorphic comparison. Then, use Pervasives.(<), for example, where needed.

module Nothing : sig ... end

An uninhabited type. This is useful when interfaces require that a type be specified, but the implementer knows this type will not be used in their implementation of the interface.

module Only_in_test : sig ... end

This module can be used to safely expose functions and values in signatures that should only be used in unit tests.

module Option_array : sig ... end

This module extends Base.Option_array with bin_io.

module Optional_syntax : sig ... end

Interfaces for use with the match%optional syntax, provided by ppx_optional.

module Percent : sig ... end

A scale factor, not bounded between 0% and 100%, represented as a float.

module Pid : sig ... end

Process ID.

module Pool : sig ... end
module Pool_intf : sig ... end
module Pooled_hashtbl : sig ... end

A polymorphic hashtbl that uses Pool to avoid allocation.

module Printexc : sig ... end

This module is here to ensure that we don't use the functions in Caml.Printexc inadvertently.

module Queue : sig ... end

This module extends Base.Queue with bin_io.

module Quickcheck : sig ... end
module Quickcheck_intf : sig ... end
module Quickcheckable : sig ... end
module Robustly_comparable : sig ... end
module Rope : sig ... end

A rope is a standard data structure that represents a single string as a tree of strings, allowing concatenation to do no work up front.

module Set_once : sig ... end

A 'a Set_once.t is like an 'a option ref that can only be set once. A Set_once.t starts out as None, the first set transitions it to Some, and subsequent sets fail.

module Splittable_random = Splittable_random
module Stable_comparable : sig ... end
module Stable_unit_test : sig ... end

The tests generated by these functors are run like any other unit tests: by the inline test runner when the functor is applied.

module Stack : sig ... end

A stack implemented with an array.

module String_id : sig ... end

Like Identifiable, but with t = private string and stable modules.

module Substring : sig ... end

A substring is a contiguous set of characters within a string. Creating a substring does not copy. Therefore modifying the string also modifies the substring.

module Substring_intf : sig ... end
module Thread_safe_queue : sig ... end

A thread-safe non-blocking queue of unbounded size.

module Timing_wheel_ns : sig ... end

A timing wheel can be thought of as a set of alarms.

module Total_map : sig ... end

A map that includes an entry for every possible value of the key type.

module Tuple : sig ... end

Functors and signatures for dealing with modules for tuples.

module Tuple_type : sig ... end

Tuple-like types used in Pool.

module Tuple2 = Tuple.T2
module Tuple3 = Tuple.T3
module Type_immediacy : sig ... end

Witnesses that express whether a type's values are always, sometimes, or never immediate.

module Uniform_array : sig ... end

This module extends Base.Uniform_array with bin_io.

module Union_find : sig ... end

Imperative data structure for representing disjoint sets.

module Unique_id : sig ... end

Functors for creating modules that mint unique identifiers.

module Unit_of_time : sig ... end

Represents a unit of time, e.g., that used by Time.Span.to_string_hum. Comparison respects Nanosecond < Microsecond < Millisecond < Second < Minute < Hour < Day.

module Univ : sig ... end

An extensible "universal" variant type.

module Univ_map : sig ... end

Universal/heterogeneous maps, useful for storing values of arbitrary type in a single map.

module Unpack_buffer : sig ... end

A buffer for incremental decoding of an input stream.

module Validated : sig ... end
module Weak : sig ... end

Module for dealing with weak pointers, i.e., pointers that don't prevent garbage collection of what they point to.

module Weak_pointer : sig ... end

A weak pointer is a pointer to a heap block that does not cause the heap block to remain live during garbage collection.

module type Unique_id = Unique_id.Id

Derived from Base.T. Used for matching bare signatures with just a type.

include module type of struct include Base.T end
module type T = sig ... end
module type T1 = sig ... end
module type T2 = sig ... end
module type T3 = sig ... end
module type T_bin = sig ... end

Top-level values

type 'a _maybe_bound = 'a Maybe_bound.t =
  1. | Incl of 'a
  2. | Excl of 'a
  3. | Unbounded
val does_raise : (unit -> 'a) -> bool
type bytes = [
  1. | `This_type_does_not_equal_string_because_we_want_type_errors_to_say_string
]
val am_running_inline_test : bool
val sec : Base.Float.t -> Base.Float.t
Exceptions
val raise : exn -> 'a

Raise the given exception value

val raise_notrace : exn -> 'a

A faster version raise which does not record the backtrace.

  • since 4.02.0
val invalid_arg : string -> 'a

Raise exception Invalid_argument with the given string.

val failwith : string -> 'a

Raise exception Failure with the given string.

exception Exit

The Exit exception is not raised by any library function. It is provided for use in your programs.

Comparisons
val (=) : 'a -> 'a -> bool

e1 = e2 tests for structural equality of e1 and e2. Mutable structures (e.g. references and arrays) are equal if and only if their current contents are structurally equal, even if the two mutable objects are not the same physical object. Equality between functional values raises Invalid_argument. Equality between cyclic data structures may not terminate.

val (<>) : 'a -> 'a -> bool

Negation of Pervasives.(=).

val (<) : 'a -> 'a -> bool

See Pervasives.(>=).

val (>) : 'a -> 'a -> bool

See Pervasives.(>=).

val (<=) : 'a -> 'a -> bool

See Pervasives.(>=).

val (>=) : 'a -> 'a -> bool

Structural ordering functions. These functions coincide with the usual orderings over integers, characters, strings, byte sequences and floating-point numbers, and extend them to a total ordering over all types. The ordering is compatible with ( = ). As in the case of ( = ), mutable structures are compared by contents. Comparison between functional values raises Invalid_argument. Comparison between cyclic structures may not terminate.

val compare : 'a -> 'a -> int

compare x y returns 0 if x is equal to y, a negative integer if x is less than y, and a positive integer if x is greater than y. The ordering implemented by compare is compatible with the comparison predicates =, < and > defined above, with one difference on the treatment of the float value Pervasives.nan. Namely, the comparison predicates treat nan as different from any other float value, including itself; while compare treats nan as equal to itself and less than any other float value. This treatment of nan ensures that compare defines a total ordering relation.

compare applied to functional values may raise Invalid_argument. compare applied to cyclic structures may not terminate.

The compare function can be used as the comparison function required by the Set.Make and Map.Make functors, as well as the List.sort and Array.sort functions.

val min : 'a -> 'a -> 'a

Return the smaller of the two arguments. The result is unspecified if one of the arguments contains the float value nan.

val max : 'a -> 'a -> 'a

Return the greater of the two arguments. The result is unspecified if one of the arguments contains the float value nan.

val (==) : 'a -> 'a -> bool

e1 == e2 tests for physical equality of e1 and e2. On mutable types such as references, arrays, byte sequences, records with mutable fields and objects with mutable instance variables, e1 == e2 is true if and only if physical modification of e1 also affects e2. On non-mutable types, the behavior of ( == ) is implementation-dependent; however, it is guaranteed that e1 == e2 implies compare e1 e2 = 0.

  • deprecated [since 2014-10] Use [phys_equal]
val (!=) : 'a -> 'a -> bool

Negation of Pervasives.(==).

  • deprecated [since 2014-10] Use [phys_equal]
Boolean operations
val not : bool -> bool

The boolean negation.

val (&&) : bool -> bool -> bool

The boolean 'and'. Evaluation is sequential, left-to-right: in e1 && e2, e1 is evaluated first, and if it returns false, e2 is not evaluated at all.

val (&) : bool -> bool -> bool
  • deprecated [since 2010-01] {!Pervasives.( && )} should be used instead.
val (||) : bool -> bool -> bool

The boolean 'or'. Evaluation is sequential, left-to-right: in e1 || e2, e1 is evaluated first, and if it returns true, e2 is not evaluated at all.

val or : bool -> bool -> bool
  • deprecated [since 2010-01] {!Pervasives.( || )} should be used instead.
Debugging
val __LOC__ : string

__LOC__ returns the location at which this expression appears in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"

val __FILE__ : string

__FILE__ returns the name of the file currently being parsed by the compiler.

val __LINE__ : int

__LINE__ returns the line number at which this expression appears in the file currently being parsed by the compiler.

val __MODULE__ : string

__MODULE__ returns the module name of the file being parsed by the compiler.

val __POS__ : string * int * int * int

__POS__ returns a tuple (file,lnum,cnum,enum), corresponding to the location at which this expression appears in the file currently being parsed by the compiler. file is the current filename, lnum the line number, cnum the character position in the line and enum the last character position in the line.

val __LOC_OF__ : 'a -> string * 'a

__LOC_OF__ expr returns a pair (loc, expr) where loc is the location of expr in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d"

val __LINE_OF__ : 'a -> int * 'a

__LINE_OF__ expr returns a pair (line, expr), where line is the line number at which the expression expr appears in the file currently being parsed by the compiler.

val __POS_OF__ : 'a -> (string * int * int * int) * 'a

__POS_OF__ expr returns a pair (expr,loc), where loc is a tuple (file,lnum,cnum,enum) corresponding to the location at which the expression expr appears in the file currently being parsed by the compiler. file is the current filename, lnum the line number, cnum the character position in the line and enum the last character position in the line.

Composition operators
val (|>) : 'a -> ('a -> 'b) -> 'b

Reverse-application operator: x |> f |> g is exactly equivalent to g (f (x)).

  • since 4.01
val (@@) : ('a -> 'b) -> 'a -> 'b

Application operator: g @@ f @@ x is exactly equivalent to g (f (x)).

  • since 4.01
Integer arithmetic

Integers are 31 bits wide (or 63 bits on 64-bit processors). All operations are taken modulo 231 (or 263). They do not fail on overflow.

val (~-) : int -> int

Unary negation. You can also write - e instead of ~- e.

val (~+) : int -> int

Unary addition. You can also write + e instead of ~+ e.

  • since 3.12.0
val succ : int -> int

succ x is x + 1.

val pred : int -> int

pred x is x - 1.

val (+) : int -> int -> int

Integer addition.

val (-) : int -> int -> int

Integer subtraction.

val (*) : int -> int -> int

Integer multiplication.

val (/) : int -> int -> int

Integer division. Raise Division_by_zero if the second argument is 0. Integer division rounds the real quotient of its arguments towards zero. More precisely, if x >= 0 and y > 0, x / y is the greatest integer less than or equal to the real quotient of x by y. Moreover, (- x) / y = x / (- y) = - (x / y).

val (mod) : int -> int -> int

Integer remainder. If y is not zero, the result of x mod y satisfies the following properties: x = (x / y) * y + x mod y and abs(x mod y) <= abs(y) - 1. If y = 0, x mod y raises Division_by_zero. Note that x mod y is negative only if x < 0. Raise Division_by_zero if y is zero.

val abs : int -> int

Return the absolute value of the argument. Note that this may be negative if the argument is min_int.

val max_int : int

The greatest representable integer.

  • deprecated [since 2014-10] Use [Int.max_value]
val min_int : int

The smallest representable integer.

  • deprecated [since 2014-10] Use [Int.min_value]
Bitwise operations
val (land) : int -> int -> int

Bitwise logical and.

val (lor) : int -> int -> int

Bitwise logical or.

val (lxor) : int -> int -> int

Bitwise logical exclusive or.

val lnot : int -> int

Bitwise logical negation.

val (lsl) : int -> int -> int

n lsl m shifts n to the left by m bits. The result is unspecified if m < 0 or m >= bitsize, where bitsize is 32 on a 32-bit platform and 64 on a 64-bit platform.

val (lsr) : int -> int -> int

n lsr m shifts n to the right by m bits. This is a logical shift: zeroes are inserted regardless of the sign of n. The result is unspecified if m < 0 or m >= bitsize.

val (asr) : int -> int -> int

n asr m shifts n to the right by m bits. This is an arithmetic shift: the sign bit of n is replicated. The result is unspecified if m < 0 or m >= bitsize.

Floating-point arithmetic

OCaml's floating-point numbers follow the IEEE 754 standard, using double precision (64 bits) numbers. Floating-point operations never raise an exception on overflow, underflow, division by zero, etc. Instead, special IEEE numbers are returned as appropriate, such as infinity for 1.0 /. 0.0, neg_infinity for -1.0 /. 0.0, and nan ('not a number') for 0.0 /. 0.0. These special numbers then propagate through floating-point computations as expected: for instance, 1.0 /. infinity is 0.0, and any arithmetic operation with nan as argument returns nan as result.

val (~-.) : float -> float

Unary negation. You can also write -. e instead of ~-. e.

val (~+.) : float -> float

Unary addition. You can also write +. e instead of ~+. e.

  • since 3.12.0
val (+.) : float -> float -> float

Floating-point addition

val (-.) : float -> float -> float

Floating-point subtraction

val (*.) : float -> float -> float

Floating-point multiplication

val (/.) : float -> float -> float

Floating-point division.

val (**) : float -> float -> float

Exponentiation.

val sqrt : float -> float

Square root.

val exp : float -> float

Exponential.

val log : float -> float

Natural logarithm.

val log10 : float -> float

Base 10 logarithm.

  • deprecated [since 2016-07] Use [Float.log10]
val expm1 : float -> float

expm1 x computes exp x -. 1.0, giving numerically-accurate results even if x is close to 0.0.

  • since 3.12.0
  • deprecated [since 2016-07] Use [Float.expm1]
val log1p : float -> float

log1p x computes log(1.0 +. x) (natural logarithm), giving numerically-accurate results even if x is close to 0.0.

  • since 3.12.0
  • deprecated [since 2016-07] Use [Float.log1p]
val cos : float -> float

Cosine. Argument is in radians.

  • deprecated [since 2016-07] Use [Float.cos]
val sin : float -> float

Sine. Argument is in radians.

  • deprecated [since 2016-07] Use [Float.sin]
val tan : float -> float

Tangent. Argument is in radians.

  • deprecated [since 2016-07] Use [Float.tan]
val acos : float -> float

Arc cosine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between 0.0 and pi.

  • deprecated [since 2016-07] Use [Float.acos]
val asin : float -> float

Arc sine. The argument must fall within the range [-1.0, 1.0]. Result is in radians and is between -pi/2 and pi/2.

  • deprecated [since 2016-07] Use [Float.asin]
val atan : float -> float

Arc tangent. Result is in radians and is between -pi/2 and pi/2.

  • deprecated [since 2016-07] Use [Float.atan]
val atan2 : float -> float -> float

atan2 y x returns the arc tangent of y /. x. The signs of x and y are used to determine the quadrant of the result. Result is in radians and is between -pi and pi.

  • deprecated [since 2016-07] Use [Float.atan2]
val hypot : float -> float -> float

hypot x y returns sqrt(x *. x + y *. y), that is, the length of the hypotenuse of a right-angled triangle with sides of length x and y, or, equivalently, the distance of the point (x,y) to origin.

  • since 4.00.0
  • deprecated [since 2016-07] Use [Float.hypot]
val cosh : float -> float

Hyperbolic cosine. Argument is in radians.

  • deprecated [since 2016-07] Use [Float.cosh]
val sinh : float -> float

Hyperbolic sine. Argument is in radians.

  • deprecated [since 2016-07] Use [Float.sinh]
val tanh : float -> float

Hyperbolic tangent. Argument is in radians.

  • deprecated [since 2016-07] Use [Float.tanh]
val ceil : float -> float

Round above to an integer value. ceil f returns the least integer value greater than or equal to f. The result is returned as a float.

  • deprecated [since 2014-10] Use [Float.round_up]
val floor : float -> float

Round below to an integer value. floor f returns the greatest integer value less than or equal to f. The result is returned as a float.

  • deprecated [since 2014-10] Use [Float.round_down]
val abs_float : float -> float

abs_float f returns the absolute value of f.

  • deprecated [since 2014-10] Use [Float.abs]
val copysign : float -> float -> float

copysign x y returns a float whose absolute value is that of x and whose sign is that of y. If x is nan, returns nan. If y is nan, returns either x or -. x, but it is not specified which.

  • since 4.00.0
  • deprecated [since 2016-07] Use [Float.copysign]
val mod_float : float -> float -> float

mod_float a b returns the remainder of a with respect to b. The returned value is a -. n *. b, where n is the quotient a /. b rounded towards zero to an integer.

  • deprecated [since 2014-10] Use [Float.mod_float]
val frexp : float -> float * int

frexp f returns the pair of the significant and the exponent of f. When f is zero, the significant x and the exponent n of f are equal to zero. When f is non-zero, they are defined by f = x *. 2 ** n and 0.5 <= x < 1.0.

  • deprecated [since 2014-10] Use [Float.frexp]
val ldexp : float -> int -> float

ldexp x n returns x *. 2 ** n.

  • deprecated [since 2014-10] Use [Float.ldexp]
val modf : float -> float * float

modf f returns the pair of the fractional and integral part of f.

  • deprecated [since 2014-10] Use [Float.modf]
val float : int -> float

Same as Pervasives.float_of_int.

val float_of_int : int -> float

Convert an integer to floating-point.

val truncate : float -> int

Same as Pervasives.int_of_float.

  • deprecated [since 2014-10] Use [Float.iround_towards_zero_exn]
val int_of_float : float -> int

Truncate the given floating-point number to an integer. The result is unspecified if the argument is nan or falls outside the range of representable integers.

val infinity : float

Positive infinity.

  • deprecated [since 2014-10] Use [Float.infinity]
val neg_infinity : float

Negative infinity.

  • deprecated [since 2014-10] Use [Float.neg_infinity]
val nan : float

A special floating-point value denoting the result of an undefined operation such as 0.0 /. 0.0. Stands for 'not a number'. Any floating-point operation with nan as argument returns nan as result. As for floating-point comparisons, =, <, <=, > and >= return false and <> returns true if one or both of their arguments is nan.

  • deprecated [since 2014-10] Use [Float.nan]
val max_float : float

The largest positive finite value of type float.

  • deprecated [since 2014-10] Use [Float.max_value]
val min_float : float

The smallest positive, non-zero, non-denormalized value of type float.

  • deprecated [since 2014-10] Use [Float.min_value]
val epsilon_float : float

The difference between 1.0 and the smallest exactly representable floating-point number greater than 1.0.

  • deprecated [since 2014-10] Use [Float.epsilon_float]
type fpclass = Stdlib.Pervasives.fpclass =
  1. | FP_normal
    (*

    Normal number, none of the below

    *)
  2. | FP_subnormal
    (*

    Number very close to 0.0, has reduced precision

    *)
  3. | FP_zero
    (*

    Number is 0.0 or -0.0

    *)
  4. | FP_infinite
    (*

    Number is positive or negative infinity

    *)
  5. | FP_nan
    (*

    Not a number: result of an undefined operation

    *)

The five classes of floating-point numbers, as determined by the Pervasives.classify_float function.

val classify_float : float -> fpclass

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.

  • deprecated [since 2014-10] Use [Float.classify]
String operations

More string operations are provided in module String.

val (^) : string -> string -> string

String concatenation.

Character operations

More character operations are provided in module Char.

val int_of_char : char -> int

Return the ASCII code of the argument.

val char_of_int : int -> char

Return the character with the given ASCII code. Raise Invalid_argument "char_of_int" if the argument is outside the range 0--255.

Unit operations
val ignore : 'a -> unit

Discard the value of its argument and return (). For instance, ignore(f x) discards the result of the side-effecting function f. It is equivalent to f x; (), except that the latter may generate a compiler warning; writing ignore(f x) instead avoids the warning.

String conversion functions
val string_of_bool : bool -> string

Return the string representation of a boolean. As the returned values may be shared, the user should not modify them directly.

val bool_of_string : string -> bool

Convert the given string to a boolean. Raise Invalid_argument "bool_of_string" if the string is not "true" or "false".

val string_of_int : int -> string

Return the string representation of an integer, in decimal.

val int_of_string : string -> int

Convert the given string to an integer. The string is read in decimal (by default) or in hexadecimal (if it begins with 0x or 0X), octal (if it begins with 0o or 0O), or binary (if it begins with 0b or 0B). Raise Failure "int_of_string" if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type int.

val string_of_float : float -> string

Return the string representation of a floating-point number.

val float_of_string : string -> float

Convert the given string to a float. Raise Failure "float_of_string" if the given string is not a valid representation of a float.

Pair operations
val fst : ('a * 'b) -> 'a

Return the first component of a pair.

val snd : ('a * 'b) -> 'b

Return the second component of a pair.

List operations

More list operations are provided in module List.

Input/output

Note: all input/output functions can raise Sys_error when the system calls they invoke fail.

type in_channel = Stdlib.Pervasives.in_channel

The type of input channel.

  • deprecated [since 2016-04] Use [In_channel.t]
type out_channel = Stdlib.Pervasives.out_channel

The type of output channel.

  • deprecated [since 2016-04] Use [Out_channel.t]
val stdin : Stdlib.Pervasives.in_channel

The standard input for the process.

  • deprecated [since 2016-04] Use [In_channel.stdin]
val stdout : Stdlib.Pervasives.out_channel

The standard output for the process.

val stderr : Stdlib.Pervasives.out_channel

The standard error output for the process.

Output functions on standard output
val print_char : char -> unit

Print a character on standard output.

  • deprecated [since 2016-04] Use [Out_channel.output_char stdout]
val print_string : string -> unit

Print a string on standard output.

val print_bytes : bytes -> unit

Print a byte sequence on standard output.

  • deprecated [since 2016-04] Core doesn't support [bytes] yet.
val print_int : int -> unit

Print an integer, in decimal, on standard output.

  • deprecated [since 2016-04] Use [Out_channel.output_string stdout]
val print_float : float -> unit

Print a floating-point number, in decimal, on standard output.

  • deprecated [since 2016-04] Use [Out_channel.output_string stdout]
val print_endline : string -> unit

Print a string, followed by a newline character, on standard output and flush standard output.

val print_newline : unit -> unit

Print a newline character on standard output, and flush standard output. This can be used to simulate line buffering of standard output.

  • deprecated [since 2016-04] Use [Out_channel.newline stdout]
Output functions on standard error
val prerr_char : char -> unit

Print a character on standard error.

  • deprecated [since 2016-04] Use [Out_channel.output_char stderr]
val prerr_string : string -> unit

Print a string on standard error.

  • deprecated [since 2016-04] Use [Out_channel.output_string stderr]
val prerr_bytes : bytes -> unit

Print a byte sequence on standard error.

  • deprecated [since 2016-04] Core doesn't support [bytes] yet
val prerr_int : int -> unit

Print an integer, in decimal, on standard error.

  • deprecated [since 2016-04] Use [Out_channel.output_string stderr]
val prerr_float : float -> unit

Print a floating-point number, in decimal, on standard error.

  • deprecated [since 2016-04] Use [Out_channel.output_string stderr]
val prerr_endline : string -> unit

Print a string, followed by a newline character on standard error and flush standard error.

val prerr_newline : unit -> unit

Print a newline character on standard error, and flush standard error.

  • deprecated [since 2016-04] Use [Out_channel.newline stderr]
Input functions on standard input
val read_line : unit -> string

Flush standard output, then read characters from standard input until a newline character is encountered. Return the string of all characters read, without the newline character at the end.

  • deprecated [since 2016-04] Use [Out_channel.(flush stdout); In_channel.(input_line_exn stdin)]
val read_int : unit -> int

Flush standard output, then read one line from standard input and convert it to an integer. Raise Failure "int_of_string" if the line read is not a valid representation of an integer.

  • deprecated [since 2016-04] Use [Out_channel.(flush stdout); Int.of_string In_channel.(input_line_exn stdin)]
val read_float : unit -> float

Flush standard output, then read one line from standard input and convert it to a floating-point number. The result is unspecified if the line read is not a valid representation of a floating-point number.

  • deprecated [since 2016-04] Use [Out_channel.(flush stdout); Float.of_string In_channel.(input_line_exn stdin)]
General output functions
type open_flag = Stdlib.Pervasives.open_flag =
  1. | Open_rdonly
    (*

    open for reading.

    *)
  2. | Open_wronly
    (*

    open for writing.

    *)
  3. | Open_append
    (*

    open for appending: always write at end of file.

    *)
  4. | Open_creat
    (*

    create the file if it does not exist.

    *)
  5. | Open_trunc
    (*

    empty the file if it already exists.

    *)
  6. | Open_excl
    (*

    fail if Open_creat and the file already exists.

    *)
  7. | Open_binary
    (*

    open in binary mode (no conversion).

    *)
  8. | Open_text
    (*

    open in text mode (may perform conversions).

    *)
  9. | Open_nonblock
    (*

    open in non-blocking mode.

    *)

Opening modes for Pervasives.open_out_gen and Pervasives.open_in_gen.

  • deprecated [since 2016-04] Use [In_channel.create] and [Out_channel.create]
val open_out : string -> Stdlib.Pervasives.out_channel

Open the named file for writing, and return a new output channel on that file, positionned at the beginning of the file. The file is truncated to zero length if it already exists. It is created if it does not already exists.

  • deprecated [since 2016-04] Use [Out_channel.create]
val open_out_bin : string -> Stdlib.Pervasives.out_channel

Same as Pervasives.open_out, but the file is opened in binary mode, so that no translation takes place during writes. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Pervasives.open_out.

  • deprecated [since 2016-04] Use [Out_channel.create]
val open_out_gen : Stdlib.Pervasives.open_flag list -> int -> string -> Stdlib.Pervasives.out_channel

open_out_gen mode perm filename opens the named file for writing, as described above. The extra argument mode specify the opening mode. The extra argument perm specifies the file permissions, in case the file must be created. Pervasives.open_out and Pervasives.open_out_bin are special cases of this function.

  • deprecated [since 2016-04] Use [Out_channel.create]
val flush : Stdlib.Pervasives.out_channel -> unit

Flush the buffer associated with the given output channel, performing all pending writes on that channel. Interactive programs must be careful about flushing standard output and standard error at the right time.

  • deprecated [since 2016-04] Use [Out_channel.flush]
val flush_all : unit -> unit

Flush all open output channels; ignore errors.

  • deprecated [since 2016-04]
val output_char : Stdlib.Pervasives.out_channel -> char -> unit

Write the character on the given output channel.

  • deprecated [since 2016-04] Use [Out_channel.output_char]
val output_string : Stdlib.Pervasives.out_channel -> string -> unit

Write the string on the given output channel.

  • deprecated [since 2016-04] Use [Out_channel.output_string]
val output_bytes : Stdlib.Pervasives.out_channel -> bytes -> unit

Write the byte sequence on the given output channel.

  • deprecated [since 2016-04] Core doesn't yet support bytes.
val output : Stdlib.Pervasives.out_channel -> bytes -> int -> int -> unit

output oc buf pos len writes len characters from byte sequence buf, starting at offset pos, to the given output channel oc. Raise Invalid_argument "output" if pos and len do not designate a valid range of buf.

  • deprecated [since 2016-04] Core doesn't yet support bytes.
val output_substring : Stdlib.Pervasives.out_channel -> string -> int -> int -> unit

Same as output but take a string as argument instead of a byte sequence.

  • deprecated [since 2016-04] Use [Out_channel.output]
val output_byte : Stdlib.Pervasives.out_channel -> int -> unit

Write one 8-bit integer (as the single character with that code) on the given output channel. The given integer is taken modulo 256.

  • deprecated [since 2016-04] Use [Out_channel.output_byte]
val output_binary_int : Stdlib.Pervasives.out_channel -> int -> unit

Write one integer in binary format (4 bytes, big-endian) on the given output channel. The given integer is taken modulo 232. The only reliable way to read it back is through the Pervasives.input_binary_int function. The format is compatible across all machines for a given version of OCaml.

  • deprecated [since 2016-04] Use [Out_channel.output_binary_int]
val output_value : Stdlib.Pervasives.out_channel -> 'a -> unit

Write the representation of a structured value of any type to a channel. Circularities and sharing inside the value are detected and preserved. The object can be read back, by the function Pervasives.input_value. See the description of module Marshal for more information. Pervasives.output_value is equivalent to Marshal.to_channel with an empty list of flags.

  • deprecated [since 2016-04] Use [Out_channel.output_value]
val seek_out : Stdlib.Pervasives.out_channel -> int -> unit

seek_out chan pos sets the current writing position to pos for channel chan. This works only for regular files. On files of other kinds (such as terminals, pipes and sockets), the behavior is unspecified.

  • deprecated [since 2014-10] Use [Out_channel.seek]
val pos_out : Stdlib.Pervasives.out_channel -> int

Return the current writing position for the given channel. Does not work on channels opened with the Open_append flag (returns unspecified results).

  • deprecated [since 2014-10] Use [Out_channel.pos]
val out_channel_length : Stdlib.Pervasives.out_channel -> int

Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless.

  • deprecated [since 2014-10] Use [Out_channel.length]
val close_out : Stdlib.Pervasives.out_channel -> unit

Close the given channel, flushing all buffered write operations. Output functions raise a Sys_error exception when they are applied to a closed output channel, except close_out and flush, which do nothing when applied to an already closed channel. Note that close_out may raise Sys_error if the operating system signals an error when flushing or closing.

  • deprecated [since 2014-10] Use [Out_channel.close]
val close_out_noerr : Stdlib.Pervasives.out_channel -> unit

Same as close_out, but ignore all errors.

  • deprecated [since 2016-04] Use [Out_channel.close] and catch exceptions
val set_binary_mode_out : Stdlib.Pervasives.out_channel -> bool -> unit

set_binary_mode_out oc true sets the channel oc to binary mode: no translations take place during output. set_binary_mode_out oc false sets the channel oc to text mode: depending on the operating system, some translations may take place during output. For instance, under Windows, end-of-lines will be translated from \n to \r\n. This function has no effect under operating systems that do not distinguish between text mode and binary mode.

  • deprecated [since 2016-04] Use [Out_channel.set_binary_mode]
General input functions
val open_in : string -> Stdlib.Pervasives.in_channel

Open the named file for reading, and return a new input channel on that file, positionned at the beginning of the file.

  • deprecated [since 2016-04] Use [In_channel.create]
val open_in_bin : string -> Stdlib.Pervasives.in_channel

Same as Pervasives.open_in, but the file is opened in binary mode, so that no translation takes place during reads. On operating systems that do not distinguish between text mode and binary mode, this function behaves like Pervasives.open_in.

  • deprecated [since 2016-04] Use [In_channel.create]
val open_in_gen : Stdlib.Pervasives.open_flag list -> int -> string -> Stdlib.Pervasives.in_channel

open_in_gen mode perm filename opens the named file for reading, as described above. The extra arguments mode and perm specify the opening mode and file permissions. Pervasives.open_in and Pervasives.open_in_bin are special cases of this function.

  • deprecated [since 2016-04] Use [In_channel.create]
val input_char : Stdlib.Pervasives.in_channel -> char

Read one character from the given input channel. Raise End_of_file if there are no more characters to read.

  • deprecated [since 2016-04] Use [In_channel.input_char]
val input_line : Stdlib.Pervasives.in_channel -> string

Read characters from the given input channel, until a newline character is encountered. Return the string of all characters read, without the newline character at the end. Raise End_of_file if the end of the file is reached at the beginning of line.

  • deprecated [since 2016-04] Use [In_channel.input_line]
val input : Stdlib.Pervasives.in_channel -> bytes -> int -> int -> int

input ic buf pos len reads up to len characters from the given channel ic, storing them in byte sequence buf, starting at character number pos. It returns the actual number of characters read, between 0 and len (inclusive). A return value of 0 means that the end of file was reached. A return value between 0 and len exclusive means that not all requested len characters were read, either because no more characters were available at that time, or because the implementation found it convenient to do a partial read; input must be called again to read the remaining characters, if desired. (See also Pervasives.really_input for reading exactly len characters.) Exception Invalid_argument "input" is raised if pos and len do not designate a valid range of buf.

  • deprecated [since 2016-04] Core doesn't yet support bytes.
val really_input : Stdlib.Pervasives.in_channel -> bytes -> int -> int -> unit

really_input ic buf pos len reads len characters from channel ic, storing them in byte sequence buf, starting at character number pos. Raise End_of_file if the end of file is reached before len characters have been read. Raise Invalid_argument "really_input" if pos and len do not designate a valid range of buf.

  • deprecated [since 2016-04] Core doesn't yet support bytes.
val really_input_string : Stdlib.Pervasives.in_channel -> int -> string

really_input_string ic len reads len characters from channel ic and returns them in a new string. Raise End_of_file if the end of file is reached before len characters have been read.

  • deprecated [since 2016-04] Use [In_channel.really_input_exn ~pos:0]
val input_byte : Stdlib.Pervasives.in_channel -> int

Same as Pervasives.input_char, but return the 8-bit integer representing the character. Raise End_of_file if an end of file was reached.

  • deprecated [since 2016-04] Use [In_channel.input_byte]
val input_binary_int : Stdlib.Pervasives.in_channel -> int

Read an integer encoded in binary format (4 bytes, big-endian) from the given input channel. See Pervasives.output_binary_int. Raise End_of_file if an end of file was reached while reading the integer.

  • deprecated [since 2016-04] Use [In_channel.input_binary_int]
val input_value : Stdlib.Pervasives.in_channel -> 'a

Read the representation of a structured value, as produced by Pervasives.output_value, and return the corresponding value. This function is identical to Marshal.from_channel; see the description of module Marshal for more information, in particular concerning the lack of type safety.

  • deprecated [since 2016-04] Use [In_channel.unsafe_input_value]
val seek_in : Stdlib.Pervasives.in_channel -> int -> unit

seek_in chan pos sets the current reading position to pos for channel chan. This works only for regular files. On files of other kinds, the behavior is unspecified.

  • deprecated [since 2014-10] Use [In_channel.seek]
val pos_in : Stdlib.Pervasives.in_channel -> int

Return the current reading position for the given channel.

  • deprecated [since 2014-10] Use [In_channel.pos]
val in_channel_length : Stdlib.Pervasives.in_channel -> int

Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless. The returned size does not take into account the end-of-line translations that can be performed when reading from a channel opened in text mode.

  • deprecated [since 2014-10] Use [In_channel.length]
val close_in : Stdlib.Pervasives.in_channel -> unit

Close the given channel. Input functions raise a Sys_error exception when they are applied to a closed input channel, except close_in, which does nothing when applied to an already closed channel.

  • deprecated [since 2014-10] Use [In_channel.close]
val close_in_noerr : Stdlib.Pervasives.in_channel -> unit

Same as close_in, but ignore all errors.

  • deprecated [since 2016-04] Use [In_channel.close] and catch exceptions
val set_binary_mode_in : Stdlib.Pervasives.in_channel -> bool -> unit

set_binary_mode_in ic true sets the channel ic to binary mode: no translations take place during input. set_binary_mode_out ic false sets the channel ic to text mode: depending on the operating system, some translations may take place during input. For instance, under Windows, end-of-lines will be translated from \r\n to \n. This function has no effect under operating systems that do not distinguish between text mode and binary mode.

  • deprecated [since 2016-04] Use [In_channel.set_binary_mode]
Operations on large files
module LargeFile : sig ... end

Operations on large files. This sub-module provides 64-bit variants of the channel functions that manipulate file positions and file sizes. By representing positions and sizes by 64-bit integers (type int64) instead of regular integers (type int), these alternate functions allow operating on files whose sizes are greater than max_int.

References
type 'a ref = 'a Stdlib.Pervasives.ref = {
  1. mutable contents : 'a;
}

The type of references (mutable indirection cells) containing a value of type 'a.

val ref : 'a -> 'a ref

Return a fresh reference containing the given value.

val (!) : 'a ref -> 'a

!r returns the current contents of reference r. Equivalent to fun r -> r.contents.

val (:=) : 'a ref -> 'a -> unit

r := a stores the value of a in reference r. Equivalent to fun r v -> r.contents <- v.

val incr : int ref -> unit

Increment the integer contained in the given reference. Equivalent to fun r -> r := succ !r.

val decr : int ref -> unit

Decrement the integer contained in the given reference. Equivalent to fun r -> r := pred !r.

Result type

type ('a, 'b) result = ('a, 'b) Stdlib.Pervasives.result =
  1. | Ok of 'a
  2. | Error of 'b
Operations on format strings

Format strings are character strings with special lexical conventions that defines the functionality of formatted input/output functions. Format strings are used to read data with formatted input functions from module Scanf and to print data with formatted output functions from modules Printf and Format.

Format strings are made of three kinds of entities:

  • conversions specifications, introduced by the special character '%' followed by one or more characters specifying what kind of argument to read or print,
  • formatting indications, introduced by the special character '@' followed by one or more characters specifying how to read or print the argument,
  • plain characters that are regular characters with usual lexical conventions. Plain characters specify string literals to be read in the input or printed in the output.

There is an additional lexical rule to escape the special characters '%' and '@' in format strings: if a special character follows a '%' character, it is treated as a plain character. In other words, "%%" is considered as a plain '%' and "%@" as a plain '@'.

For more information about conversion specifications and formatting indications available, read the documentation of modules Scanf, Printf and Format.

Format strings have a general and highly polymorphic type ('a, 'b, 'c, 'd, 'e, 'f) format6. The two simplified types, format and format4 below are included for backward compatibility with earlier releases of OCaml.

The meaning of format string type parameters is as follows:

  • 'a is the type of the parameters of the format for formatted output functions (printf-style functions); 'a is the type of the values read by the format for formatted input functions (scanf-style functions).
  • 'b is the type of input source for formatted input functions and the type of output target for formatted output functions. For printf-style functions from module Printf, 'b is typically out_channel; for printf-style functions from module Format, 'b is typically Format.formatter; for scanf-style functions from module Scanf, 'b is typically Scanf.Scanning.in_channel.

Type argument 'b is also the type of the first argument given to user's defined printing functions for %a and %t conversions, and user's defined reading functions for %r conversion.

  • 'c is the type of the result of the %a and %t printing functions, and also the type of the argument transmitted to the first argument of kprintf-style functions or to the kscanf-style functions.
  • 'd is the type of parameters for the scanf-style functions.
  • 'e is the type of the receiver function for the scanf-style functions.
  • 'f is the final result type of a formatted input/output function invocation: for the printf-style functions, it is typically unit; for the scanf-style functions, it is typically the result type of the receiver function.
type ('a, 'b, 'c, 'd, 'e, 'f) format6 = ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6
type ('a, 'b, 'c, 'd) format4 = ('a, 'b, 'c, 'c, 'c, 'd) format6
type ('a, 'b, 'c) format = ('a, 'b, 'c, 'c) format4
val string_of_format : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string

Converts a format string into a string.

val format_of_string : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> ('a, 'b, 'c, 'd, 'e, 'f) format6

format_of_string s returns a format string read from the string literal s. Note: format_of_string can not convert a string argument that is not a literal. If you need this functionality, use the more general Scanf.format_from_string function.

val (^^) : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> ('f, 'b, 'c, 'e, 'g, 'h) format6 -> ('a, 'b, 'c, 'd, 'g, 'h) format6

f1 ^^ f2 catenates format strings f1 and f2. The result is a format string that behaves as the concatenation of format strings f1 and f2: in case of formatted output, it accepts arguments from f1, then arguments from f2; in case of formatted input, it returns results from f1, then results from f2.

Program termination
val exit : int -> 'a

Terminate the process, returning the given status code to the operating system: usually 0 to indicate no errors, and a small positive integer to indicate failure. All open output channels are flushed with flush_all. An implicit exit 0 is performed each time a program terminates normally. An implicit exit 2 is performed if the program terminates early because of an uncaught exception.

val at_exit : (unit -> unit) -> unit

Register the given function to be called at program termination time. The functions registered with at_exit will be called when the program executes Pervasives.exit, or terminates, either normally or because of an uncaught exception. The functions are called in 'last in, first out' order: the function most recently added with at_exit is called first.

val (|!) : 'a -> ('a -> 'b) -> 'b
  • deprecated [since 2016-07] Use [ |> ]
include module type of struct include Either.Export end
type (!'f, !'s) _either = ('f, 's) Base__Either.t =
  1. | First of 'f
  2. | Second of 's
include Interfaces.Robustly_comparable with type t := Base.Float.t
val (>=.) : Base.Float.t -> Base.Float.t -> bool
val (<=.) : Base.Float.t -> Base.Float.t -> bool
val (=.) : Base.Float.t -> Base.Float.t -> bool
val (>.) : Base.Float.t -> Base.Float.t -> bool
val (<.) : Base.Float.t -> Base.Float.t -> bool
val (<>.) : Base.Float.t -> Base.Float.t -> bool
val robustly_compare : Base.Float.t -> Base.Float.t -> int
type bigstring = Sexplib.Conv.bigstring
include sig ... end
val bigstring_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> bigstring
val sexp_of_bigstring : bigstring -> Ppx_sexp_conv_lib.Sexp.t
type mat = Sexplib.Conv.mat
include sig ... end
val mat_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> mat
val sexp_of_mat : mat -> Ppx_sexp_conv_lib.Sexp.t
type vec = Sexplib.Conv.vec
include sig ... end
val vec_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> vec
val sexp_of_vec : vec -> Ppx_sexp_conv_lib.Sexp.t
val sexp_of_opaque : _ -> Base.Sexp.t
val opaque_of_sexp : Base.Sexp.t -> _
val sexp_of_pair : ('a -> Base.Sexp.t) -> ('b -> Base.Sexp.t) -> ('a * 'b) -> Base.Sexp.t
val pair_of_sexp : (Base.Sexp.t -> 'a) -> (Base.Sexp.t -> 'b) -> Base.Sexp.t -> 'a * 'b
exception Of_sexp_error of Base.Exn.t * Base.Sexp.t
val of_sexp_error : Base.String.t -> Base.Sexp.t -> _
val of_sexp_error_exn : Base.Exn.t -> Base.Sexp.t -> _
include module type of struct include Interfaces end

Various interface exports.

module type Applicative = Interfaces.Applicative
module type Binable = Interfaces.Binable
module type Comparable = Interfaces.Comparable
module type Comparable_binable = Interfaces.Comparable_binable
module type Floatable = Interfaces.Floatable
module type Hashable = Interfaces.Hashable
module type Hashable_binable = Interfaces.Hashable_binable
module type Identifiable = Interfaces.Identifiable
module type Infix_comparators = Interfaces.Infix_comparators
module type Intable = Interfaces.Intable
module type Monad = Interfaces.Monad
module type Quickcheckable = Interfaces.Quickcheckable
module type Robustly_comparable = Interfaces.Robustly_comparable
module type Sexpable = Interfaces.Sexpable
module type Stable = Interfaces.Stable
module type Stable_int63able = Interfaces.Stable_int63able
module type Stable_without_comparator = Interfaces.Stable_without_comparator
module type Stable1 = Interfaces.Stable1
module type Stable2 = Interfaces.Stable2
module type Stable3 = Interfaces.Stable3
module type Stable4 = Interfaces.Stable4
module type Stringable = Interfaces.Stringable
module type Unit = Interfaces.Unit
include module type of struct include List.Infix end
val (@) : 'a Base__List.t -> 'a Base__List.t -> 'a Base__List.t

never_returns should be used as the return type of functions that don't return and might block forever, rather than 'a or _. This forces callers of such functions to have a call to never_returns at the call site, which makes it clear to readers what's going on. We do not intend to use this type for functions such as failwithf that always raise an exception.

type never_returns = Nothing.t
val sexp_of_never_returns : never_returns -> Ppx_sexp_conv_lib.Sexp.t
val never_returns : Nothing.t -> 'a
include module type of struct include Ordering.Export end
type _ordering = Ordering.t =
  1. | Less
  2. | Equal
  3. | Greater
include module type of struct include Perms.Export end
type read = Perms.Read.t

We don't expose bin_io for write due to a naming conflict with the functions exported by bin_io for read_write. If you want bin_io for write, use Write.t.

include sig ... end
val bin_read : read Bin_prot.Type_class.t
val bin_read_read : read Bin_prot.Read.reader
val __bin_read_read__ : (Base.Int.t -> read) Bin_prot.Read.reader
val bin_reader_read : read Bin_prot.Type_class.reader
val bin_size_read : read Bin_prot.Size.sizer
val bin_write_read : read Bin_prot.Write.writer
val bin_writer_read : read Bin_prot.Type_class.writer
val bin_shape_read : Bin_prot.Shape.t
val compare_read : read -> read -> Base.Int.t
val hash_fold_read : Ppx_hash_lib.Std.Hash.state -> read -> Ppx_hash_lib.Std.Hash.state
val hash_read : read -> Ppx_hash_lib.Std.Hash.hash_value
val read_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> read
val sexp_of_read : read -> Ppx_sexp_conv_lib.Sexp.t
type write = Perms.Write.t
include sig ... end
val compare_write : write -> write -> Base.Int.t
val hash_fold_write : Ppx_hash_lib.Std.Hash.state -> write -> Ppx_hash_lib.Std.Hash.state
val hash_write : write -> Ppx_hash_lib.Std.Hash.hash_value
val write_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> write
val sexp_of_write : write -> Ppx_sexp_conv_lib.Sexp.t
type immutable = Perms.Immutable.t
include sig ... end
val bin_immutable : immutable Bin_prot.Type_class.t
val bin_read_immutable : immutable Bin_prot.Read.reader
val __bin_read_immutable__ : (Base.Int.t -> immutable) Bin_prot.Read.reader
val bin_reader_immutable : immutable Bin_prot.Type_class.reader
val bin_size_immutable : immutable Bin_prot.Size.sizer
val bin_write_immutable : immutable Bin_prot.Write.writer
val bin_writer_immutable : immutable Bin_prot.Type_class.writer
val bin_shape_immutable : Bin_prot.Shape.t
val compare_immutable : immutable -> immutable -> Base.Int.t
val hash_fold_immutable : Ppx_hash_lib.Std.Hash.state -> immutable -> Ppx_hash_lib.Std.Hash.state
val hash_immutable : immutable -> Ppx_hash_lib.Std.Hash.hash_value
val immutable_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> immutable
val sexp_of_immutable : immutable -> Ppx_sexp_conv_lib.Sexp.t
type read_write = Perms.Read_write.t
include sig ... end
val bin_read_write : read_write Bin_prot.Type_class.t
val bin_read_read_write : read_write Bin_prot.Read.reader
val __bin_read_read_write__ : (Base.Int.t -> read_write) Bin_prot.Read.reader
val bin_reader_read_write : read_write Bin_prot.Type_class.reader
val bin_size_read_write : read_write Bin_prot.Size.sizer
val bin_write_read_write : read_write Bin_prot.Write.writer
val bin_writer_read_write : read_write Bin_prot.Type_class.writer
val bin_shape_read_write : Bin_prot.Shape.t
val compare_read_write : read_write -> read_write -> Base.Int.t
val hash_fold_read_write : Ppx_hash_lib.Std.Hash.state -> read_write -> Ppx_hash_lib.Std.Hash.state
val hash_read_write : read_write -> Ppx_hash_lib.Std.Hash.hash_value
val read_write_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> read_write
val sexp_of_read_write : read_write -> Ppx_sexp_conv_lib.Sexp.t
type 'a perms = 'a Perms.Upper_bound.t
include sig ... end
val bin_perms : 'a Bin_prot.Type_class.t -> 'a perms Bin_prot.Type_class.t
val bin_read_perms : 'a Bin_prot.Read.reader -> 'a perms Bin_prot.Read.reader
val __bin_read_perms__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a perms) Bin_prot.Read.reader
val bin_reader_perms : 'a Bin_prot.Type_class.reader -> 'a perms Bin_prot.Type_class.reader
val bin_size_perms : 'a Bin_prot.Size.sizer -> 'a perms Bin_prot.Size.sizer
val bin_write_perms : 'a Bin_prot.Write.writer -> 'a perms Bin_prot.Write.writer
val bin_writer_perms : 'a Bin_prot.Type_class.writer -> 'a perms Bin_prot.Type_class.writer
val bin_shape_perms : Bin_prot.Shape.t -> Bin_prot.Shape.t
val compare_perms : ('a -> 'a -> Base.Int.t) -> 'a perms -> 'a perms -> Base.Int.t
val hash_fold_perms : (Ppx_hash_lib.Std.Hash.state -> 'a -> Ppx_hash_lib.Std.Hash.state) -> Ppx_hash_lib.Std.Hash.state -> 'a perms -> Ppx_hash_lib.Std.Hash.state
val perms_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a perms
val sexp_of_perms : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a perms -> Ppx_sexp_conv_lib.Sexp.t
include module type of struct include Result.Export end
type (!'ok, !'err) _result = ('ok, 'err) Result.t =
  1. | Ok of 'ok
  2. | Error of 'err
val is_ok : ('a, 'b) Result.t -> bool
val is_error : ('a, 'b) Result.t -> bool
type -'a return = private 'a Core_kernel__.Import.With_return.return = {
  1. return : 'b. 'a -> 'b;
}
exception Bug of Base.String.t
exception C_malloc_exn of Base.Int.t * Base.Int.t

Raised if malloc in C bindings fail (errno * size).

exception Finally of Core_kernel__.Import.Exn.t * Core_kernel__.Import.Exn.t
val fst3 : ('a * 'b * 'c) -> 'a
val snd3 : ('a * 'b * 'c) -> 'b
val trd3 : ('a * 'b * 'c) -> 'c
val uw : 'a option -> 'a
val (%) : Int.t -> Int.t -> Int.t
val (/%) : Int.t -> Int.t -> Int.t
val (//) : Int.t -> Int.t -> float
val (==>) : bool -> bool -> bool
val print_s : ?mach:unit -> Sexp.t -> unit
val bprintf : Base__.Import0.Caml.Buffer.t -> ('a, Base__.Import0.Caml.Buffer.t, unit) Stdlib.format -> 'a
val const : 'a -> 'b -> 'a
val eprintf : ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'a
val error : ?strict:unit -> string -> 'a -> ('a -> Base__.Sexp.t) -> 'b Or_error.t
val error_s : Base__.Sexp.t -> 'a Or_error.t
val failwithf : ('a, unit, string, unit -> 'b) Stdlib.format4 -> 'a
val failwithp : ?strict:Base.Unit.t -> Stdlib.Lexing.position -> Base.String.t -> 'a -> ('a -> Base.Sexp.t) -> 'b
val failwiths : ?strict:Base.Unit.t -> ?here:Stdlib.Lexing.position -> Base.String.t -> 'a -> ('a -> Base.Sexp.t) -> 'b
val force : 'a Base.Lazy.t -> 'a
val fprintf : Stdio.Out_channel.t -> ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'a
val ident : 'a -> 'a
val invalid_argf : ('a, unit, string, unit -> 'b) Stdlib.format4 -> 'a
val ifprintf : 'a -> ('b, 'a, 'c, unit) Stdlib.format4 -> 'b
val is_none : 'a Option.t -> bool
val is_some : 'a Option.t -> bool
val ksprintf : (string -> 'a) -> ('b, unit, string, 'a) Stdlib.format4 -> 'b
val ok_exn : 'a Or_error.t -> 'a
val phys_equal : 'a -> 'a -> bool
val phys_same : 'a -> 'b -> bool
val printf : ('a, Stdio.Out_channel.t, Base.unit) Base.format -> 'a
val protect : f:(unit -> 'a) -> finally:(unit -> unit) -> 'a
val protectx : f:('a -> 'b) -> 'a -> finally:('a -> unit) -> 'b
val raise_s : Base__.Sexp.t -> 'a
val round : ?dir:[ `Down | `Nearest | `Up | `Zero ] -> Float.t -> Float.t
val sprintf : ('a, unit, string) Stdlib.format -> 'a
val stage : 'a -> 'a Core_kernel__.Import.Staged.t
val unstage : 'a Core_kernel__.Import.Staged.t -> 'a
val with_return : ('a Core_kernel__.Import.With_return.return -> 'a) -> 'a
val with_return_option : ('a Core_kernel__.Import.With_return.return -> unit) -> 'a option
include module type of struct include Typerep_lib.Std_internal end
module Typerep : sig ... end
type tuple0 = Typerep_lib__Std_internal.tuple0
val value_tuple0 : tuple0
val typerep_of_function : 'a Typerep.t -> 'b Typerep.t -> ('a -> 'b) Typerep.t
val typerep_of_tuple0 : tuple0 Typerep.t
val typerep_of_tuple2 : 'a Typerep.t -> 'b Typerep.t -> ('a * 'b) Typerep.t
val typerep_of_tuple3 : 'a Typerep.t -> 'b Typerep.t -> 'c Typerep.t -> ('a * 'b * 'c) Typerep.t
val typerep_of_tuple4 : 'a Typerep.t -> 'b Typerep.t -> 'c Typerep.t -> 'd Typerep.t -> ('a * 'b * 'c * 'd) Typerep.t
val typerep_of_tuple5 : 'a Typerep.t -> 'b Typerep.t -> 'c Typerep.t -> 'd Typerep.t -> 'e Typerep.t -> ('a * 'b * 'c * 'd * 'e) Typerep.t
val typename_of_function : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> ('a -> 'b) Typerep_lib.Typename.t
val typename_of_tuple0 : tuple0 Typerep_lib.Typename.t
val typename_of_tuple2 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> ('a * 'b) Typerep_lib.Typename.t
val typename_of_tuple3 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> 'c Typerep_lib.Typename.t -> ('a * 'b * 'c) Typerep_lib.Typename.t
val typename_of_tuple4 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> 'c Typerep_lib.Typename.t -> 'd Typerep_lib.Typename.t -> ('a * 'b * 'c * 'd) Typerep_lib.Typename.t
val typename_of_tuple5 : 'a Typerep_lib.Typename.t -> 'b Typerep_lib.Typename.t -> 'c Typerep_lib.Typename.t -> 'd Typerep_lib.Typename.t -> 'e Typerep_lib.Typename.t -> ('a * 'b * 'c * 'd * 'e) Typerep_lib.Typename.t
include sig ... end
include sig ... end
val bin_array : 'a Bin_prot.Type_class.t -> 'a Base.Array.t Bin_prot.Type_class.t
val bin_read_array : 'a Bin_prot.Read.reader -> 'a Base.Array.t Bin_prot.Read.reader
val __bin_read_array__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a Base.Array.t) Bin_prot.Read.reader
val bin_reader_array : 'a Bin_prot.Type_class.reader -> 'a Base.Array.t Bin_prot.Type_class.reader
val bin_size_array : 'a Bin_prot.Size.sizer -> 'a Base.Array.t Bin_prot.Size.sizer
val bin_write_array : 'a Bin_prot.Write.writer -> 'a Base.Array.t Bin_prot.Write.writer
val bin_writer_array : 'a Bin_prot.Type_class.writer -> 'a Base.Array.t Bin_prot.Type_class.writer
val bin_shape_array : Bin_prot.Shape.t -> Bin_prot.Shape.t
val compare_array : ('a -> 'a -> Base.Int.t) -> 'a Base.Array.t -> 'a Base.Array.t -> Base.Int.t
val array_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a Base.Array.t
val sexp_of_array : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a Base.Array.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_array : 'a Typerep_lib.Std.Typerep.t -> 'a Base.Array.t Typerep_lib.Std.Typerep.t
val typename_of_array : 'a Typerep_lib.Std.Typename.t -> 'a Base.Array.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_bool : Base.Bool.t Bin_prot.Type_class.t
val bin_read_bool : Base.Bool.t Bin_prot.Read.reader
val __bin_read_bool__ : (Base.Int.t -> Base.Bool.t) Bin_prot.Read.reader
val bin_reader_bool : Base.Bool.t Bin_prot.Type_class.reader
val bin_size_bool : Base.Bool.t Bin_prot.Size.sizer
val bin_write_bool : Base.Bool.t Bin_prot.Write.writer
val bin_writer_bool : Base.Bool.t Bin_prot.Type_class.writer
val bin_shape_bool : Bin_prot.Shape.t
val compare_bool : Base.Bool.t -> Base.Bool.t -> Base.Int.t
val hash_fold_bool : Ppx_hash_lib.Std.Hash.state -> Base.Bool.t -> Ppx_hash_lib.Std.Hash.state
val hash_bool : Base.Bool.t -> Ppx_hash_lib.Std.Hash.hash_value
val bool_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Bool.t
val sexp_of_bool : Base.Bool.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_bool : Base.Bool.t Typerep_lib.Std.Typerep.t
val typename_of_bool : Base.Bool.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_char : Base.Char.t Bin_prot.Type_class.t
val bin_read_char : Base.Char.t Bin_prot.Read.reader
val __bin_read_char__ : (Base.Int.t -> Base.Char.t) Bin_prot.Read.reader
val bin_reader_char : Base.Char.t Bin_prot.Type_class.reader
val bin_size_char : Base.Char.t Bin_prot.Size.sizer
val bin_write_char : Base.Char.t Bin_prot.Write.writer
val bin_writer_char : Base.Char.t Bin_prot.Type_class.writer
val bin_shape_char : Bin_prot.Shape.t
val compare_char : Base.Char.t -> Base.Char.t -> Base.Int.t
val hash_fold_char : Ppx_hash_lib.Std.Hash.state -> Base.Char.t -> Ppx_hash_lib.Std.Hash.state
val hash_char : Base.Char.t -> Ppx_hash_lib.Std.Hash.hash_value
val char_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Char.t
val sexp_of_char : Base.Char.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_char : Base.Char.t Typerep_lib.Std.Typerep.t
val typename_of_char : Base.Char.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_float : Base.Float.t Bin_prot.Type_class.t
val bin_read_float : Base.Float.t Bin_prot.Read.reader
val __bin_read_float__ : (Base.Int.t -> Base.Float.t) Bin_prot.Read.reader
val bin_reader_float : Base.Float.t Bin_prot.Type_class.reader
val bin_size_float : Base.Float.t Bin_prot.Size.sizer
val bin_write_float : Base.Float.t Bin_prot.Write.writer
val bin_writer_float : Base.Float.t Bin_prot.Type_class.writer
val bin_shape_float : Bin_prot.Shape.t
val compare_float : Base.Float.t -> Base.Float.t -> Base.Int.t
val hash_fold_float : Ppx_hash_lib.Std.Hash.state -> Base.Float.t -> Ppx_hash_lib.Std.Hash.state
val hash_float : Base.Float.t -> Ppx_hash_lib.Std.Hash.hash_value
val float_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Float.t
val sexp_of_float : Base.Float.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_float : Base.Float.t Typerep_lib.Std.Typerep.t
val typename_of_float : Base.Float.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_int : Base.Int.t Bin_prot.Type_class.t
val bin_read_int : Base.Int.t Bin_prot.Read.reader
val __bin_read_int__ : (Base.Int.t -> Base.Int.t) Bin_prot.Read.reader
val bin_reader_int : Base.Int.t Bin_prot.Type_class.reader
val bin_size_int : Base.Int.t Bin_prot.Size.sizer
val bin_write_int : Base.Int.t Bin_prot.Write.writer
val bin_writer_int : Base.Int.t Bin_prot.Type_class.writer
val bin_shape_int : Bin_prot.Shape.t
val compare_int : Base.Int.t -> Base.Int.t -> Base.Int.t
val hash_fold_int : Ppx_hash_lib.Std.Hash.state -> Base.Int.t -> Ppx_hash_lib.Std.Hash.state
val hash_int : Base.Int.t -> Ppx_hash_lib.Std.Hash.hash_value
val int_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Int.t
val sexp_of_int : Base.Int.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_int : Base.Int.t Typerep_lib.Std.Typerep.t
val typename_of_int : Base.Int.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_int32 : Base.Int32.t Bin_prot.Type_class.t
val bin_read_int32 : Base.Int32.t Bin_prot.Read.reader
val __bin_read_int32__ : (Base.Int.t -> Base.Int32.t) Bin_prot.Read.reader
val bin_reader_int32 : Base.Int32.t Bin_prot.Type_class.reader
val bin_size_int32 : Base.Int32.t Bin_prot.Size.sizer
val bin_write_int32 : Base.Int32.t Bin_prot.Write.writer
val bin_writer_int32 : Base.Int32.t Bin_prot.Type_class.writer
val bin_shape_int32 : Bin_prot.Shape.t
val compare_int32 : Base.Int32.t -> Base.Int32.t -> Base.Int.t
val hash_fold_int32 : Ppx_hash_lib.Std.Hash.state -> Base.Int32.t -> Ppx_hash_lib.Std.Hash.state
val hash_int32 : Base.Int32.t -> Ppx_hash_lib.Std.Hash.hash_value
val int32_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Int32.t
val sexp_of_int32 : Base.Int32.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_int32 : Base.Int32.t Typerep_lib.Std.Typerep.t
val typename_of_int32 : Base.Int32.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_int64 : Base.Int64.t Bin_prot.Type_class.t
val bin_read_int64 : Base.Int64.t Bin_prot.Read.reader
val __bin_read_int64__ : (Base.Int.t -> Base.Int64.t) Bin_prot.Read.reader
val bin_reader_int64 : Base.Int64.t Bin_prot.Type_class.reader
val bin_size_int64 : Base.Int64.t Bin_prot.Size.sizer
val bin_write_int64 : Base.Int64.t Bin_prot.Write.writer
val bin_writer_int64 : Base.Int64.t Bin_prot.Type_class.writer
val bin_shape_int64 : Bin_prot.Shape.t
val compare_int64 : Base.Int64.t -> Base.Int64.t -> Base.Int.t
val hash_fold_int64 : Ppx_hash_lib.Std.Hash.state -> Base.Int64.t -> Ppx_hash_lib.Std.Hash.state
val hash_int64 : Base.Int64.t -> Ppx_hash_lib.Std.Hash.hash_value
val int64_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Int64.t
val sexp_of_int64 : Base.Int64.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_int64 : Base.Int64.t Typerep_lib.Std.Typerep.t
val typename_of_int64 : Base.Int64.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_lazy_t : 'a Bin_prot.Type_class.t -> 'a lazy_t Bin_prot.Type_class.t
val bin_read_lazy_t : 'a Bin_prot.Read.reader -> 'a lazy_t Bin_prot.Read.reader
val __bin_read_lazy_t__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a lazy_t) Bin_prot.Read.reader
val bin_reader_lazy_t : 'a Bin_prot.Type_class.reader -> 'a lazy_t Bin_prot.Type_class.reader
val bin_size_lazy_t : 'a Bin_prot.Size.sizer -> 'a lazy_t Bin_prot.Size.sizer
val bin_write_lazy_t : 'a Bin_prot.Write.writer -> 'a lazy_t Bin_prot.Write.writer
val bin_writer_lazy_t : 'a Bin_prot.Type_class.writer -> 'a lazy_t Bin_prot.Type_class.writer
val bin_shape_lazy_t : Bin_prot.Shape.t -> Bin_prot.Shape.t
val compare_lazy_t : ('a -> 'a -> Base.Int.t) -> 'a lazy_t -> 'a lazy_t -> Base.Int.t
val hash_fold_lazy_t : (Ppx_hash_lib.Std.Hash.state -> 'a -> Ppx_hash_lib.Std.Hash.state) -> Ppx_hash_lib.Std.Hash.state -> 'a lazy_t -> Ppx_hash_lib.Std.Hash.state
val lazy_t_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a lazy_t
val sexp_of_lazy_t : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a lazy_t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_lazy_t : 'a Typerep_lib.Std.Typerep.t -> 'a lazy_t Typerep_lib.Std.Typerep.t
val typename_of_lazy_t : 'a Typerep_lib.Std.Typename.t -> 'a lazy_t Typerep_lib.Std.Typename.t
include sig ... end
val bin_list : 'a Bin_prot.Type_class.t -> 'a Base.List.t Bin_prot.Type_class.t
val bin_read_list : 'a Bin_prot.Read.reader -> 'a Base.List.t Bin_prot.Read.reader
val __bin_read_list__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a Base.List.t) Bin_prot.Read.reader
val bin_reader_list : 'a Bin_prot.Type_class.reader -> 'a Base.List.t Bin_prot.Type_class.reader
val bin_size_list : 'a Bin_prot.Size.sizer -> 'a Base.List.t Bin_prot.Size.sizer
val bin_write_list : 'a Bin_prot.Write.writer -> 'a Base.List.t Bin_prot.Write.writer
val bin_writer_list : 'a Bin_prot.Type_class.writer -> 'a Base.List.t Bin_prot.Type_class.writer
val bin_shape_list : Bin_prot.Shape.t -> Bin_prot.Shape.t
val compare_list : ('a -> 'a -> Base.Int.t) -> 'a Base.List.t -> 'a Base.List.t -> Base.Int.t
val hash_fold_list : (Ppx_hash_lib.Std.Hash.state -> 'a -> Ppx_hash_lib.Std.Hash.state) -> Ppx_hash_lib.Std.Hash.state -> 'a Base.List.t -> Ppx_hash_lib.Std.Hash.state
val list_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a Base.List.t
val sexp_of_list : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a Base.List.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_list : 'a Typerep_lib.Std.Typerep.t -> 'a Base.List.t Typerep_lib.Std.Typerep.t
val typename_of_list : 'a Typerep_lib.Std.Typename.t -> 'a Base.List.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_nativeint : Base.Nativeint.t Bin_prot.Type_class.t
val bin_read_nativeint : Base.Nativeint.t Bin_prot.Read.reader
val __bin_read_nativeint__ : (Base.Int.t -> Base.Nativeint.t) Bin_prot.Read.reader
val bin_reader_nativeint : Base.Nativeint.t Bin_prot.Type_class.reader
val bin_size_nativeint : Base.Nativeint.t Bin_prot.Size.sizer
val bin_write_nativeint : Base.Nativeint.t Bin_prot.Write.writer
val bin_writer_nativeint : Base.Nativeint.t Bin_prot.Type_class.writer
val bin_shape_nativeint : Bin_prot.Shape.t
val compare_nativeint : Base.Nativeint.t -> Base.Nativeint.t -> Base.Int.t
val hash_fold_nativeint : Ppx_hash_lib.Std.Hash.state -> Base.Nativeint.t -> Ppx_hash_lib.Std.Hash.state
val hash_nativeint : Base.Nativeint.t -> Ppx_hash_lib.Std.Hash.hash_value
val nativeint_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Nativeint.t
val sexp_of_nativeint : Base.Nativeint.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_nativeint : Base.Nativeint.t Typerep_lib.Std.Typerep.t
val typename_of_nativeint : Base.Nativeint.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_option : 'a Bin_prot.Type_class.t -> 'a Base.Option.t Bin_prot.Type_class.t
val bin_read_option : 'a Bin_prot.Read.reader -> 'a Base.Option.t Bin_prot.Read.reader
val __bin_read_option__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a Base.Option.t) Bin_prot.Read.reader
val bin_reader_option : 'a Bin_prot.Type_class.reader -> 'a Base.Option.t Bin_prot.Type_class.reader
val bin_size_option : 'a Bin_prot.Size.sizer -> 'a Base.Option.t Bin_prot.Size.sizer
val bin_write_option : 'a Bin_prot.Write.writer -> 'a Base.Option.t Bin_prot.Write.writer
val bin_writer_option : 'a Bin_prot.Type_class.writer -> 'a Base.Option.t Bin_prot.Type_class.writer
val bin_shape_option : Bin_prot.Shape.t -> Bin_prot.Shape.t
val compare_option : ('a -> 'a -> Base.Int.t) -> 'a Base.Option.t -> 'a Base.Option.t -> Base.Int.t
val hash_fold_option : (Ppx_hash_lib.Std.Hash.state -> 'a -> Ppx_hash_lib.Std.Hash.state) -> Ppx_hash_lib.Std.Hash.state -> 'a Base.Option.t -> Ppx_hash_lib.Std.Hash.state
val option_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a Base.Option.t
val sexp_of_option : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a Base.Option.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_option : 'a Typerep_lib.Std.Typerep.t -> 'a Base.Option.t Typerep_lib.Std.Typerep.t
val typename_of_option : 'a Typerep_lib.Std.Typename.t -> 'a Base.Option.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_string : Base.String.t Bin_prot.Type_class.t
val bin_read_string : Base.String.t Bin_prot.Read.reader
val __bin_read_string__ : (Base.Int.t -> Base.String.t) Bin_prot.Read.reader
val bin_reader_string : Base.String.t Bin_prot.Type_class.reader
val bin_size_string : Base.String.t Bin_prot.Size.sizer
val bin_write_string : Base.String.t Bin_prot.Write.writer
val bin_writer_string : Base.String.t Bin_prot.Type_class.writer
val bin_shape_string : Bin_prot.Shape.t
val compare_string : Base.String.t -> Base.String.t -> Base.Int.t
val hash_fold_string : Ppx_hash_lib.Std.Hash.state -> Base.String.t -> Ppx_hash_lib.Std.Hash.state
val hash_string : Base.String.t -> Ppx_hash_lib.Std.Hash.hash_value
val string_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.String.t
val sexp_of_string : Base.String.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_string : Base.String.t Typerep_lib.Std.Typerep.t
val typename_of_string : Base.String.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_bytes : Base.Bytes.t Bin_prot.Type_class.t
val bin_read_bytes : Base.Bytes.t Bin_prot.Read.reader
val __bin_read_bytes__ : (Base.Int.t -> Base.Bytes.t) Bin_prot.Read.reader
val bin_reader_bytes : Base.Bytes.t Bin_prot.Type_class.reader
val bin_size_bytes : Base.Bytes.t Bin_prot.Size.sizer
val bin_write_bytes : Base.Bytes.t Bin_prot.Write.writer
val bin_writer_bytes : Base.Bytes.t Bin_prot.Type_class.writer
val bin_shape_bytes : Bin_prot.Shape.t
val compare_bytes : Base.Bytes.t -> Base.Bytes.t -> Base.Int.t
val bytes_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Bytes.t
val sexp_of_bytes : Base.Bytes.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_bytes : Base.Bytes.t Typerep_lib.Std.Typerep.t
val typename_of_bytes : Base.Bytes.t Typerep_lib.Std.Typename.t
include sig ... end
val bin_ref : 'a Bin_prot.Type_class.t -> 'a ref Bin_prot.Type_class.t
val bin_read_ref : 'a Bin_prot.Read.reader -> 'a ref Bin_prot.Read.reader
val __bin_read_ref__ : 'a Bin_prot.Read.reader -> (Base.Int.t -> 'a ref) Bin_prot.Read.reader
val bin_reader_ref : 'a Bin_prot.Type_class.reader -> 'a ref Bin_prot.Type_class.reader
val bin_size_ref : 'a Bin_prot.Size.sizer -> 'a ref Bin_prot.Size.sizer
val bin_write_ref : 'a Bin_prot.Write.writer -> 'a ref Bin_prot.Write.writer
val bin_writer_ref : 'a Bin_prot.Type_class.writer -> 'a ref Bin_prot.Type_class.writer
val bin_shape_ref : Bin_prot.Shape.t -> Bin_prot.Shape.t
val compare_ref : ('a -> 'a -> Base.Int.t) -> 'a ref -> 'a ref -> Base.Int.t
val ref_of_sexp : (Ppx_sexp_conv_lib.Sexp.t -> 'a) -> Ppx_sexp_conv_lib.Sexp.t -> 'a ref
val sexp_of_ref : ('a -> Ppx_sexp_conv_lib.Sexp.t) -> 'a ref -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_ref : 'a Typerep_lib.Std.Typerep.t -> 'a ref Typerep_lib.Std.Typerep.t
val typename_of_ref : 'a Typerep_lib.Std.Typename.t -> 'a ref Typerep_lib.Std.Typename.t
include sig ... end
val bin_unit : Base.Unit.t Bin_prot.Type_class.t
val bin_read_unit : Base.Unit.t Bin_prot.Read.reader
val __bin_read_unit__ : (Base.Int.t -> Base.Unit.t) Bin_prot.Read.reader
val bin_reader_unit : Base.Unit.t Bin_prot.Type_class.reader
val bin_size_unit : Base.Unit.t Bin_prot.Size.sizer
val bin_write_unit : Base.Unit.t Bin_prot.Write.writer
val bin_writer_unit : Base.Unit.t Bin_prot.Type_class.writer
val bin_shape_unit : Bin_prot.Shape.t
val compare_unit : Base.Unit.t -> Base.Unit.t -> Base.Int.t
val hash_fold_unit : Ppx_hash_lib.Std.Hash.state -> Base.Unit.t -> Ppx_hash_lib.Std.Hash.state
val hash_unit : Base.Unit.t -> Ppx_hash_lib.Std.Hash.hash_value
val unit_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> Base.Unit.t
val sexp_of_unit : Base.Unit.t -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_unit : Base.Unit.t Typerep_lib.Std.Typerep.t
val typename_of_unit : Base.Unit.t Typerep_lib.Std.Typename.t
type float_array = Base.Float.t Base.Array.t
include sig ... end
val bin_float_array : float_array Bin_prot.Type_class.t
val bin_read_float_array : float_array Bin_prot.Read.reader
val __bin_read_float_array__ : (Base.Int.t -> float_array) Bin_prot.Read.reader
val bin_reader_float_array : float_array Bin_prot.Type_class.reader
val bin_size_float_array : float_array Bin_prot.Size.sizer
val bin_write_float_array : float_array Bin_prot.Write.writer
val bin_writer_float_array : float_array Bin_prot.Type_class.writer
val bin_shape_float_array : Bin_prot.Shape.t
val compare_float_array : float_array -> float_array -> Base.Int.t
val float_array_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> float_array
val sexp_of_float_array : float_array -> Ppx_sexp_conv_lib.Sexp.t
val typerep_of_float_array : float_array Typerep_lib.Std.Typerep.t
val typename_of_float_array : float_array Typerep_lib.Std.Typename.t
val sexp_of_exn : Core_kernel__.Import.Exn.t -> Base__.Ppx_sexp_conv_lib.Sexp.t
type 'a sexp_array = 'a Base.Array.t
val bin_shape_sexp_array : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_array : 'a Bin_prot.Size.sizer -> 'a Base.Array.t -> int
val bin_write_sexp_array : 'a Bin_prot.Write.writer -> Bin_prot.Common.buf -> pos:Bin_prot.Common.pos -> 'a Base.Array.t -> Bin_prot.Common.pos
val bin_writer_sexp_array : 'a Bin_prot.Type_class.writer -> 'a Base.Array.t Bin_prot.Type_class.writer
val __bin_read_sexp_array__ : 'a Bin_prot.Read.reader -> Bin_prot.Common.buf -> pos_ref:Bin_prot.Common.pos_ref -> Base.Int.t -> 'a Base.Array.t
val bin_read_sexp_array : 'a Bin_prot.Read.reader -> Bin_prot.Common.buf -> pos_ref:Bin_prot.Common.pos_ref -> 'a Base.Array.t
val bin_reader_sexp_array : 'a Bin_prot.Type_class.reader -> 'a Base.Array.t Bin_prot.Type_class.reader
val bin_sexp_array : 'a Bin_prot.Type_class.t -> 'a Base.Array.t Bin_prot.Type_class.t
val compare_sexp_array : 'a. ('a -> 'a -> Base.Int.t) -> 'a sexp_array -> 'a sexp_array -> Base.Int.t
module Typename_of_sexp_array : sig ... end
val typename_of_sexp_array : 'a Typerep_lib.Typename.t -> 'a sexp_array Typerep_lib.Typename.t
val typerep_of_sexp_array : 'a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_array Typerep_lib.Std.Typerep.t
type sexp_bool = Base.Bool.t
val bin_shape_sexp_bool : Bin_prot.Shape.t
val bin_size_sexp_bool : Base.Bool.t Bin_prot.Size.sizer
val bin_write_sexp_bool : Base.Bool.t Bin_prot.Write.writer
val bin_writer_sexp_bool : Base.Bool.t Bin_prot.Type_class.writer
val __bin_read_sexp_bool__ : (Base.Int.t -> Base.Bool.t) Bin_prot.Read.reader
val bin_read_sexp_bool : Base.Bool.t Bin_prot.Read.reader
val bin_reader_sexp_bool : Base.Bool.t Bin_prot.Type_class.reader
val bin_sexp_bool : Base.Bool.t Bin_prot.Type_class.t
val compare_sexp_bool : sexp_bool -> sexp_bool -> Base.Int.t
val hash_fold_sexp_bool : Ppx_hash_lib.Std.Hash.state -> sexp_bool -> Ppx_hash_lib.Std.Hash.state
val hash_sexp_bool : sexp_bool -> Ppx_hash_lib.Std.Hash.hash_value
module Typename_of_sexp_bool : sig ... end
val typename_of_sexp_bool : sexp_bool Typerep_lib.Typename.t
val typerep_of_sexp_bool : sexp_bool Typerep_lib.Std.Typerep.t
type 'a sexp_list = 'a Base.List.t
val bin_shape_sexp_list : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_list : 'a Bin_prot.Size.sizer -> 'a Base.List.t -> int
val bin_write_sexp_list : 'a Bin_prot.Write.writer -> Bin_prot.Common.buf -> pos:Bin_prot.Common.pos -> 'a Base.List.t -> Bin_prot.Common.pos
val bin_writer_sexp_list : 'a Bin_prot.Type_class.writer -> 'a Base.List.t Bin_prot.Type_class.writer
val __bin_read_sexp_list__ : 'a Bin_prot.Read.reader -> Bin_prot.Common.buf -> pos_ref:Bin_prot.Common.pos_ref -> Base.Int.t -> 'a Base.List.t
val bin_read_sexp_list : 'a Bin_prot.Read.reader -> Bin_prot.Common.buf -> pos_ref:Bin_prot.Common.pos_ref -> 'a Base.List.t
val bin_reader_sexp_list : 'a Bin_prot.Type_class.reader -> 'a Base.List.t Bin_prot.Type_class.reader
val bin_sexp_list : 'a Bin_prot.Type_class.t -> 'a Base.List.t Bin_prot.Type_class.t
val compare_sexp_list : 'a. ('a -> 'a -> Base.Int.t) -> 'a sexp_list -> 'a sexp_list -> Base.Int.t
val hash_fold_sexp_list : 'a. (Ppx_hash_lib.Std.Hash.state -> 'a -> Ppx_hash_lib.Std.Hash.state) -> Ppx_hash_lib.Std.Hash.state -> 'a sexp_list -> Ppx_hash_lib.Std.Hash.state
module Typename_of_sexp_list : sig ... end
val typename_of_sexp_list : 'a Typerep_lib.Typename.t -> 'a sexp_list Typerep_lib.Typename.t
val typerep_of_sexp_list : 'a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_list Typerep_lib.Std.Typerep.t
type 'a sexp_option = 'a Base.Option.t
val bin_shape_sexp_option : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_option : 'a Bin_prot.Size.sizer -> 'a Base.Option.t -> int
val bin_write_sexp_option : 'a Bin_prot.Write.writer -> Bin_prot.Common.buf -> pos:Bin_prot.Common.pos -> 'a Base.Option.t -> Bin_prot.Common.pos
val bin_writer_sexp_option : 'a Bin_prot.Type_class.writer -> 'a Base.Option.t Bin_prot.Type_class.writer
val __bin_read_sexp_option__ : 'a Bin_prot.Read.reader -> Bin_prot.Common.buf -> pos_ref:Bin_prot.Common.pos_ref -> Base.Int.t -> 'a Base.Option.t
val bin_read_sexp_option : 'a Bin_prot.Read.reader -> Bin_prot.Common.buf -> pos_ref:Bin_prot.Common.pos_ref -> 'a Base.Option.t
val bin_reader_sexp_option : 'a Bin_prot.Type_class.reader -> 'a Base.Option.t Bin_prot.Type_class.reader
val bin_sexp_option : 'a Bin_prot.Type_class.t -> 'a Base.Option.t Bin_prot.Type_class.t
val compare_sexp_option : 'a. ('a -> 'a -> Base.Int.t) -> 'a sexp_option -> 'a sexp_option -> Base.Int.t
val hash_fold_sexp_option : 'a. (Ppx_hash_lib.Std.Hash.state -> 'a -> Ppx_hash_lib.Std.Hash.state) -> Ppx_hash_lib.Std.Hash.state -> 'a sexp_option -> Ppx_hash_lib.Std.Hash.state
module Typename_of_sexp_option : sig ... end
val typename_of_sexp_option : 'a Typerep_lib.Typename.t -> 'a sexp_option Typerep_lib.Typename.t
val typerep_of_sexp_option : 'a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_option Typerep_lib.Std.Typerep.t
type 'a sexp_opaque = 'a
val bin_shape_sexp_opaque : Bin_prot.Shape.t -> Bin_prot.Shape.t
val bin_size_sexp_opaque : 'a -> 'a
val bin_write_sexp_opaque : 'a -> 'a
val bin_writer_sexp_opaque : 'a Bin_prot.Type_class.writer -> 'a Bin_prot.Type_class.writer
val __bin_read_sexp_opaque__ : 'a -> 'b -> pos_ref:Bin_prot.Common.pos ref -> 'c -> 'd
val bin_read_sexp_opaque : 'a -> 'a
val bin_reader_sexp_opaque : 'a Bin_prot.Type_class.reader -> 'a Bin_prot.Type_class.reader
val bin_sexp_opaque : 'a Bin_prot.Type_class.t -> 'a Bin_prot.Type_class.t
val compare_sexp_opaque : 'a. ('a -> 'a -> Base.Int.t) -> 'a sexp_opaque -> 'a sexp_opaque -> Base.Int.t
val hash_fold_sexp_opaque : 'a. (Ppx_hash_lib.Std.Hash.state -> 'a -> Ppx_hash_lib.Std.Hash.state) -> Ppx_hash_lib.Std.Hash.state -> 'a sexp_opaque -> Ppx_hash_lib.Std.Hash.state
module Typename_of_sexp_opaque : sig ... end
val typename_of_sexp_opaque : 'a Typerep_lib.Typename.t -> 'a sexp_opaque Typerep_lib.Typename.t
val typerep_of_sexp_opaque : 'a. 'a Typerep_lib.Std.Typerep.t -> 'a sexp_opaque Typerep_lib.Std.Typerep.t
exception Not_found
  • deprecated [since 2018-02] Instead of raising [Not_found], consider using [raise_s] with an informative error message. If code needs to distinguish [Not_found] from other exceptions, please change it to handle both [Not_found] and [Not_found_s]. Then, instead of raising [Not_found], raise [Not_found_s] with an informative error message.
exception Not_found_s of Sexplib0.Sexp.t

Std

Std defines modules exposed by Core_kernel that are overridden by Core.

Modules imported from Base without modification

module Caml = Caml

Modules that extend Base

module Container_intf : sig ... end
module Int_replace_polymorphic_compare : sig ... end

Modules added by Core_kernel

module Bigbuffer : sig ... end

Extensible string buffers based on Bigstrings.

module Bigstring : sig ... end

String type based on Bigarray, for use in I/O and C-bindings.

module Bigstring_marshal : sig ... end

Utility functions for marshalling to and from Bigstring.

module Core_kernel_stable : sig ... end
module Date : sig ... end

Date module.

module Map_intf : sig ... end
module Md5 : sig ... end

This module implements the MD5 message-digest algorithm as described IETF RFC 1321. t is the result type and val digest_string : string -> t is the implementation of the algorithm itself.

module Digest = Md5
module Optional_syntax_intf : sig ... end
module Perms : sig ... end

These types are intended to be used as phantom types encoding the permissions on a given type.

module Set_intf : sig ... end
module Stack_intf : sig ... end
module Time : sig ... end
module Time_ns : sig ... end

Time module.

module Timing_wheel_ns_intf : sig ... end
module Version_util : sig ... end

This module gives access to the same version/build information returned by Command-based executables when called with the -version or -build-info flags by $0 version (-build-info | -version) or $0 (-build-info | -version).

module Core_kernel_private : sig ... end

To be used in implementing Core, but not by end users.

OCaml

Innovation. Community. Security.