package monads

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

Make(M) composes the Seq monad with M

Parameters

module M : Monad

Signature

include Trans.S with type 'a m := 'a T1(M).m with type 'a t := 'a T1(M).t with type 'a e := 'a T1(M).e
val lift : 'a T1(M).m -> 'a T1(M).t

lifts inner monad into the resulting monad

val run : 'a T1(M).t -> 'a T1(M).e

runs the computation

include Monad with type 'a t := 'a T1(M).t
val void : 'a T1(M).t -> unit T1(M).t

void m computes m and discrards the result.

val sequence : unit T1(M).t list -> unit T1(M).t

sequence xs computes a sequence of computations xs in the left to right order.

val forever : 'a T1(M).t -> 'b T1(M).t

forever xs creates a computationt that never returns.

module Fn : sig ... end

Various function combinators lifted into the Kleisli category.

module Pair : sig ... end

The pair interface lifted into the monad.

module Triple : sig ... end

The triple interface lifted into a monad.

module Lift : sig ... end

Lifts functions into the monad.

module Exn : sig ... end

Interacting between monads and language exceptions

module Collection : sig ... end

Lifts collection interface into the monad.

module List : Collection.S with type 'a t := 'a list

The Monad.Collection.S interface for lists

module Seq : Collection.S with type 'a t := 'a Core_kernel.Sequence.t

The Monad.Collection.S interface for sequences

include Syntax.S with type 'a t := 'a T1(M).t
val (>=>) : ('a -> 'b T1(M).t) -> ('b -> 'c T1(M).t) -> 'a -> 'c T1(M).t

f >=> g is fun x -> f x >>= g

val (!!) : 'a -> 'a T1(M).t

!!x is return x

val (!$) : ('a -> 'b) -> 'a T1(M).t -> 'b T1(M).t

!$f is Lift.unary f

val (!$$) : ('a -> 'b -> 'c) -> 'a T1(M).t -> 'b T1(M).t -> 'c T1(M).t

!$$f is Lift.binary f

val (!$$$) : ('a -> 'b -> 'c -> 'd) -> 'a T1(M).t -> 'b T1(M).t -> 'c T1(M).t -> 'd T1(M).t

!$$$f is Lift.ternary f

val (!$$$$) : ('a -> 'b -> 'c -> 'd -> 'e) -> 'a T1(M).t -> 'b T1(M).t -> 'c T1(M).t -> 'd T1(M).t -> 'e T1(M).t

!$$$$f is Lift.quaternary f

val (!$$$$$) : ('a -> 'b -> 'c -> 'd -> 'e -> 'f) -> 'a T1(M).t -> 'b T1(M).t -> 'c T1(M).t -> 'd T1(M).t -> 'e T1(M).t -> 'f T1(M).t

!$$$$$f is Lift.quinary f

include Syntax.Let.S with type 'a t := 'a T1(M).t
val let* : 'a T1(M).t -> ('a -> 'b T1(M).t) -> 'b T1(M).t

let* r = f x in b is f x >>= fun r -> b

val and* : 'a T1(M).t -> 'b T1(M).t -> ('a * 'b) T1(M).t

monoidal product

val let+ : 'a T1(M).t -> ('a -> 'b) -> 'b T1(M).t

let+ r = f x in b is f x >>| fun r -> b

val and+ : 'a T1(M).t -> 'b T1(M).t -> ('a * 'b) T1(M).t

monoidal product

include Core_kernel.Monad.S with type 'a t := 'a T1(M).t
val (>>=) : 'a T1(M).t -> ('a -> 'b T1(M).t) -> 'b T1(M).t
val (>>|) : 'a T1(M).t -> ('a -> 'b) -> 'b T1(M).t
module Monad_infix : sig ... end
val bind : 'a T1(M).t -> f:('a -> 'b T1(M).t) -> 'b T1(M).t
val return : 'a -> 'a T1(M).t
val map : 'a T1(M).t -> f:('a -> 'b) -> 'b T1(M).t
val join : 'a T1(M).t T1(M).t -> 'a T1(M).t
val ignore_m : 'a T1(M).t -> unit T1(M).t
val all : 'a T1(M).t list -> 'a list T1(M).t
val all_unit : unit T1(M).t list -> unit T1(M).t
module Let_syntax : sig ... end
module Let : Syntax.Let.S with type 'a t := 'a T1(M).t

Monadic operators, see Monad.Syntax.S for more.

module Syntax : Syntax.S with type 'a t := 'a T1(M).t

Monadic operators, see Monad.Syntax.S for more.

include Choice.S with type 'a t := 'a T1(M).t
include Choice.Basic with type 'a t := 'a T1(M).t
val pure : 'a -> 'a T1(M).t

pure x creates a computation that results in x.

val accept : 'a -> 'a T1(M).t

accept x accepts x as a result of computation. (Same as pure x.

val reject : unit -> 'a T1(M).t

reject () rejects the rest of computation sequence, and terminate the computation with the zero result (Same as zero ()

val guard : bool -> unit T1(M).t

guard cond ensures cond is true in the rest of computation. Otherwise the rest of the computation is rejected.

val on : bool -> unit T1(M).t -> unit T1(M).t

on cond x computes x only iff cond is true

val unless : bool -> unit T1(M).t -> unit T1(M).t

unless cond x computes x unless cond is true.

include Plus.S with type 'a t := 'a T1(M).t
val zero : unit -> 'a T1(M).t

zero () constructs a zero element

val plus : 'a T1(M).t -> 'a T1(M).t -> 'a T1(M).t

plus x y an associative operation.

OCaml

Innovation. Community. Security.