Source file measure.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
open Stats
type options = {
seed : int option;
nsamples : int;
bench_number : int;
minor_heap_size : [`words of int];
config_file : string option;
}
type 'workload measured_workload = {
workload : 'workload;
measures : Maths.vector;
}
type 'workload workload_data = 'workload measured_workload list
type 'workload measurement = {
bench_opts : options;
workload_data : 'workload workload_data;
date : Unix.tm;
}
type packed_measurement =
| Measurement : (_, 't) Benchmark.poly * 't measurement -> packed_measurement
type serialized_workload = {
bench_name : Namespace.t;
measurement_bytes : Bytes.t;
}
type workloads_stats = {
max : float;
min : float;
mean : float;
variance : float;
}
let heap_size_encoding : [`words of int] Data_encoding.t =
let open Data_encoding in
conv
(function `words i -> i)
(fun i -> `words i)
Benchmark_helpers.int_encoding
let options_encoding =
let open Data_encoding in
def "benchmark_options_encoding"
@@ conv
(fun {seed; nsamples; bench_number; minor_heap_size; config_file} ->
(seed, nsamples, bench_number, minor_heap_size, config_file))
(fun (seed, nsamples, bench_number, minor_heap_size, config_file) ->
{seed; nsamples; bench_number; minor_heap_size; config_file})
(obj5
(req "seed" (option Benchmark_helpers.int_encoding))
(req "samples_per_bench" Benchmark_helpers.int_encoding)
(req "bench_number" Benchmark_helpers.int_encoding)
(req "minor_heap_size" heap_size_encoding)
(req "config_file" (option string)))
let rfc3339_encoding =
let of_tm tm =
let time_s, _ = Unix.mktime tm in
let ptime =
WithExceptions.Option.get ~loc:__LOC__ @@ Ptime.of_float_s @@ time_s
in
Ptime.to_rfc3339 ~tz_offset_s:0 ptime
in
let to_tm rfc3339_string =
Ptime.of_rfc3339 ~strict:true rfc3339_string
|> Ptime.rfc3339_error_to_msg
|> Result.map_error (function `Msg e -> e)
|> Result.map (fun (utc, _, _) ->
let seconds = Ptime.to_float_s utc in
Unix.gmtime seconds)
in
Data_encoding.conv_with_guard
(fun tm -> of_tm tm)
(fun str -> to_tm str)
Data_encoding.string
let vec_encoding : Maths.vector Data_encoding.t =
Data_encoding.(conv Maths.vector_to_array Maths.vector_of_array (array float))
let measured_workload_encoding workload_encoding =
let open Data_encoding in
conv
(fun {workload; measures} -> (workload, measures))
(fun (workload, measures) -> {workload; measures})
(obj2 (req "workload" workload_encoding) (req "measures" vec_encoding))
let workload_data_encoding workload_encoding =
Data_encoding.list (measured_workload_encoding workload_encoding)
let measurement_encoding workload_encoding =
let open Data_encoding in
def "measurement_encoding"
@@ conv
(fun {bench_opts; workload_data; date} ->
(bench_opts, workload_data, date))
(fun (bench_opts, workload_data, date) ->
{bench_opts; workload_data; date})
(obj3
(req "benchmark_options" options_encoding)
(req "workload_data" (workload_data_encoding workload_encoding))
(req "date" rfc3339_encoding))
let serialized_workload_encoding =
let open Data_encoding in
def "serialized_workload"
@@ conv
(fun {bench_name; measurement_bytes} -> (bench_name, measurement_bytes))
(fun (bench_name, measurement_bytes) -> {bench_name; measurement_bytes})
(obj2
(req "bench_name" Namespace.encoding)
(req "measurement_bytes" bytes))
let pp_options fmtr (options : options) =
let seed =
match options.seed with
| None -> "self-init"
| Some seed -> string_of_int seed
in
let nsamples = string_of_int options.nsamples in
let config_file = Option.value options.config_file ~default:"None" in
let bench_number = string_of_int options.bench_number in
let minor_heap_size = match options.minor_heap_size with `words n -> n in
Format.fprintf
fmtr
"@[<v 2>{ seed=%s;@,\
bench #=%s;@,\
nsamples/bench=%s;@,\
minor_heap_size=%d words;@,\
config directory=%s }@]"
seed
bench_number
nsamples
minor_heap_size
config_file
let pp_stats : Format.formatter -> workloads_stats -> unit =
fun fmtr {max; min; mean; variance} ->
Format.fprintf
fmtr
"@[{ max = %f ; min = %f ; mean = %f ; sigma = %f }@]"
max
min
mean
(sqrt variance)
let save :
type c t.
filename:string ->
options:options ->
bench:(c, t) Benchmark.poly ->
workload_data:t workload_data ->
packed_measurement =
fun ~filename ~options ~bench ~workload_data ->
let (module Bench) = bench in
let date = Unix.gmtime (Unix.time ()) in
let measurement = {bench_opts = options; workload_data; date} in
let measurement_bytes =
match
Data_encoding.Binary.to_bytes
(measurement_encoding Bench.workload_encoding)
measurement
with
| Error err ->
Format.eprintf
"Measure.save: encoding failed (%a); exiting@."
Data_encoding.Binary.pp_write_error
err ;
exit 1
| Ok res -> res
in
let serialized_workload = {bench_name = Bench.name; measurement_bytes} in
let str =
match
Data_encoding.Binary.to_string
serialized_workload_encoding
serialized_workload
with
| Error err ->
Format.eprintf
"Measure.save: encoding failed (%a); exiting@."
Data_encoding.Binary.pp_write_error
err ;
exit 1
| Ok res -> res
in
let _nwritten =
Lwt_main.run @@ Tezos_stdlib_unix.Lwt_utils_unix.create_file filename str
in
Measurement (bench, measurement)
let packed_measurement_save_json measurement_packed output_path =
let (Measurement (bench, measurement)) = measurement_packed in
let module Bench = (val bench) in
let encoding_measurement = measurement_encoding Bench.workload_encoding in
let encoding =
Data_encoding.(
obj2
(req "benchmark_namespace" Namespace.encoding)
(req "measurement_data" encoding_measurement))
in
let data = Data_encoding.Json.construct encoding (Bench.name, measurement) in
let json = Data_encoding.Json.to_string data in
match output_path with
| Some output_path ->
Out_channel.with_open_text output_path (fun oc ->
Printf.fprintf oc "%s\n" json) ;
Format.eprintf
"Measure.packed_measurement_save_json: saved to %s@."
output_path
| None -> Printf.printf "%s\n" json
let load : filename:string -> packed_measurement =
fun ~filename ->
let cant_load err =
Format.eprintf
"Measure.load: can't load file (%a); exiting@."
Data_encoding.Binary.pp_read_error
err ;
exit 1
in
let str =
Lwt_main.run @@ Tezos_stdlib_unix.Lwt_utils_unix.read_file filename
in
Format.eprintf "Measure.load: loaded %s@." filename ;
match Data_encoding.Binary.of_string serialized_workload_encoding str with
| Ok {bench_name; measurement_bytes} -> (
let bench = Registration.find_benchmark_exn bench_name in
match Benchmark.ex_unpack bench with
| Ex ((module Bench) as bench) -> (
match
Data_encoding.Binary.of_bytes
(measurement_encoding Bench.workload_encoding)
measurement_bytes
with
| Error err -> cant_load err
| Ok m -> Measurement (bench, m)))
| Error err -> cant_load err
let to_csv :
type c t.
filename:string ->
bench:(c, t) Benchmark.poly ->
workload_data:t workload_data ->
unit =
fun ~filename ~bench ~workload_data ->
let (module Bench) = bench in
let lines =
List.map
(fun {workload; measures; _} ->
(Bench.workload_to_vector workload, measures))
workload_data
in
let domain vec =
vec |> String.Map.to_seq |> Seq.map fst |> String.Set.of_seq
in
let names =
List.fold_left
(fun set (vec, _) -> String.Set.union (domain vec) set)
String.Set.empty
lines
|> String.Set.elements
in
let rows =
List.map
(fun (vec, measures) ->
let row =
List.map
(fun name -> string_of_float (Sparse_vec.String.get vec name))
names
in
let measures =
measures |> Maths.vector_to_seq |> Seq.map string_of_float
|> List.of_seq
in
row @ measures)
lines
in
let names = names @ ["timings"] in
let csv = names :: rows in
Csv.export ~filename csv
let fmin (x : float) (y : float) = if x < y then x else y
let fmax (x : float) (y : float) = if x > y then x else y
let farray_min_max (arr : float array) =
let maximum = ref @@ ~-.max_float in
let minimum = ref max_float in
for i = 0 to Array.length arr - 1 do
maximum := fmax !maximum arr.(i) ;
minimum := fmin !minimum arr.(i)
done ;
(!minimum, !maximum)
let collect_stats : 'a workload_data -> workloads_stats =
fun workload_data ->
let dist_data =
List.rev_map
(fun {measures; _} -> Array.of_seq (Maths.vector_to_seq measures))
workload_data
|> Array.concat
in
let min, max = farray_min_max dist_data in
let dist = Emp.of_raw_data dist_data in
let mean = Emp.Float.empirical_mean dist in
let var = Emp.Float.empirical_variance dist in
{max; min; mean; variance = var}
module Time = struct
external get_time_ns : unit -> (int64[@unboxed])
= "caml_clock_gettime_byte" "caml_clock_gettime"
[@@noalloc]
external clock_getres : unit -> (int64[@unboxed])
= "caml_clock_getres_byte" "caml_clock_getres"
[@@noalloc]
let measure f =
let bef = get_time_ns () in
let _ = f () in
let aft = get_time_ns () in
let dt = Int64.(to_float (sub aft bef)) in
dt
[@@inline always]
let measure_and_return f =
let bef = get_time_ns () in
let x = f () in
let aft = get_time_ns () in
let dt = Int64.(to_float (sub aft bef)) in
(dt, x)
[@@inline always]
let check_timer_resolution () =
let ns = clock_getres () in
if ns = 1L then ()
else if ns = 0L then
Stdlib.failwith "Snoop: cannot work without a proper clock"
else
Format.eprintf
"WARNING: This machine's clock reslution is %Ldns, which is too large \
for Snoop benchmarks!@."
ns
end
let compute_empirical_timing_distribution :
closure:(unit -> 'a) ->
nsamples:int ->
buffer:(float, Bigarray.float64_elt, Bigarray.c_layout) Bigarray.Array1.t ->
index:int ref ->
int Linalg.Vec.Float.t =
fun ~closure ~nsamples ~buffer ~index ->
let start = !index in
let stop = !index + nsamples - 1 in
index := stop + 1 ;
for i = start to stop do
let dt = Time.measure closure in
buffer.{i} <- dt
done ;
let shape = Linalg.Tensor.Int.rank_one nsamples in
Linalg.Vec.Float.make shape (fun i -> buffer.{i + start})
[@@ocaml.inline]
let seed_init_from_options (options : options) =
match options.seed with
| None -> Random.State.make_self_init ()
| Some seed -> Random.State.make [|seed|]
let gc_init_from_options (options : options) =
match options.minor_heap_size with
| `words words -> Gc.set {(Gc.get ()) with minor_heap_size = words}
let set_gc_increment () =
let stats = Gc.stat () in
let words = stats.Gc.heap_words in
let minimal_increment = 8 * 1024 * 1024 in
let ratio = float minimal_increment /. float words in
if ratio < 0.15 then Gc.set {(Gc.get ()) with major_heap_increment = 15}
else Gc.set {(Gc.get ()) with major_heap_increment = minimal_increment}
let perform_benchmark (type c t) (options : options)
(bench : (c, t) Benchmark.poly) : t workload_data =
Time.check_timer_resolution () ;
let (module Bench) = bench in
let config =
Config.parse_config ~print:Stdlib.stderr bench options.config_file
in
let rng_state = seed_init_from_options options in
let buffer =
Bigarray.Array1.create
Bigarray.float64
Bigarray.c_layout
(options.bench_number * options.nsamples)
in
let index = ref 0 in
let benchmarks =
Bench.create_benchmarks ~rng_state ~bench_num:options.bench_number config
in
gc_init_from_options options ;
let progress =
Benchmark_helpers.make_progress_printer
Format.err_formatter
(List.length benchmarks)
"benchmarking"
in
let workload_data =
List.fold_left
(fun workload_data benchmark_fun ->
progress () ;
set_gc_increment () ;
Gc.compact () ;
let measure_plain_benchmark workload closure =
let measures =
compute_empirical_timing_distribution
~closure
~nsamples:options.nsamples
~buffer
~index
in
{workload; measures} :: workload_data
in
match benchmark_fun () with
| Generator.Calculated {workload; measure} ->
let measures = Array.init options.nsamples (fun _ -> measure ()) in
let measures = Maths.vector_of_array measures in
{workload; measures} :: workload_data
| Generator.Plain {workload; closure} ->
measure_plain_benchmark workload closure
| Generator.With_context {workload; closure; with_context} ->
with_context (fun context ->
let measures =
compute_empirical_timing_distribution
~closure:(fun () -> closure context)
~nsamples:options.nsamples
~buffer
~index
in
{workload; measures} :: workload_data)
| Generator.With_probe {workload; probe; closure} ->
Tezos_stdlib.Utils.do_n_times options.nsamples (fun () ->
closure probe) ;
let aspects = probe.Generator.aspects () in
List.fold_left
(fun acc aspect ->
let results = probe.Generator.get aspect in
let measures = Maths.vector_of_array (Array.of_list results) in
let workload = workload aspect in
{workload; measures} :: acc)
workload_data
aspects)
[]
benchmarks
in
Format.eprintf "@." ;
Format.eprintf
"stats over all benchmarks: %a@."
pp_stats
(collect_stats workload_data) ;
workload_data
let make_timing_probe (type t) (module O : Compare.COMPARABLE with type t = t) =
let table = Stdlib.Hashtbl.create 41 in
let module Set = Set.Make (O) in
{
Generator.apply =
(fun aspect closure ->
let dt, r = Time.measure_and_return closure in
Stdlib.Hashtbl.add table aspect dt ;
r);
aspects =
(fun () -> Stdlib.Hashtbl.to_seq_keys table |> Set.of_seq |> Set.elements);
get = (fun aspect -> Stdlib.Hashtbl.find_all table aspect);
}
let get_free_variable_set measurement =
let (Measurement ((module Bench), m)) = measurement in
let open Free_variable.Set in
List.fold_left
(fun acc (_local_model_name, model) ->
let fvs =
List.fold_left
(fun acc {workload; _} ->
let fvs = Model.get_free_variable_set_applied model workload in
union fvs acc)
empty
m.workload_data
in
union acc fvs)
empty
Bench.models