package tezos-benchmark

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file fixed_point_transform.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
(*****************************************************************************)
(*                                                                           *)
(* Open Source License                                                       *)
(* Copyright (c) 2020 Nomadic Labs, <contact@nomadic-labs.com>               *)
(* Copyright (c) 2023 DaiLambda, Inc., <contact@dailambda.jp>                *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

(* Transform multiplications by constants in a costlang expression to fixed
   point arithmetic. Allows to make cost functions protocol-compatible. *)

(* Modes of casting of float to int *)
type cast_mode = Ceil | Floor | Round

(* Parameters for conversion to fixed point *)
type options = {
  precision : int;
  max_relative_error : float;
  cast_mode : cast_mode;
  inverse_scaling : int;
  resolution : int;
}

(* Handling bad floating point values.  *)
type fp_error = Bad_fpclass of Float.fpclass | Negative_or_zero_fp

(* Handling codegen errors. *)
type fixed_point_transform_error = Term_is_not_closed of Free_variable.t

exception Bad_floating_point_number of fp_error

exception Fixed_point_transform_error of fixed_point_transform_error

(* ------------------------------------------------------------------------- *)

let default_options =
  {
    precision = 4;
    max_relative_error = 0.1;
    cast_mode = Round;
    inverse_scaling = 3;
    resolution = 5;
  }

(* ------------------------------------------------------------------------- *)
(* Printers, encodings, etc. *)

let pp_fixed_point_transform_error fmtr (err : fixed_point_transform_error) =
  match err with
  | Term_is_not_closed s ->
      Format.fprintf
        fmtr
        "Fixed_point_transform: Term is not closed (free variable %a \
         encountered)"
        Free_variable.pp
        s

let cast_mode_encoding =
  let open Data_encoding in
  union
    [
      case
        ~title:"Ceil"
        (Tag 0)
        (constant "Ceil")
        (function Ceil -> Some () | _ -> None)
        (fun () -> Ceil);
      case
        ~title:"Floor"
        (Tag 1)
        (constant "Floor")
        (function Floor -> Some () | _ -> None)
        (fun () -> Floor);
      case
        ~title:"Round"
        (Tag 2)
        (constant "Round")
        (function Round -> Some () | _ -> None)
        (fun () -> Round);
    ]

let options_encoding =
  let open Data_encoding in
  conv
    (fun {precision; max_relative_error; cast_mode; inverse_scaling; resolution} ->
      (precision, max_relative_error, cast_mode, inverse_scaling, resolution))
    (fun (precision, max_relative_error, cast_mode, inverse_scaling, resolution) ->
      {precision; max_relative_error; cast_mode; inverse_scaling; resolution})
    (obj5
       (dft "precision" int31 default_options.precision)
       (dft "max_relative_error" float default_options.max_relative_error)
       (dft "cast_mode" cast_mode_encoding default_options.cast_mode)
       (dft "inverse_scaling" int31 default_options.inverse_scaling)
       (dft "resolution" int31 default_options.resolution))

(* ------------------------------------------------------------------------- *)
(* Error registration *)

let () =
  Printexc.register_printer (fun exn ->
      match exn with
      | Bad_floating_point_number error ->
          let s =
            match error with
            | Bad_fpclass fpcl -> (
                match fpcl with
                | FP_subnormal -> "FP_subnormal"
                | FP_infinite -> "FP_infinite"
                | FP_nan -> "FP_nan"
                | _ -> assert false)
            | Negative_or_zero_fp -> "<= 0"
          in
          Some
            (Printf.sprintf
               "Fixed_point_transform: Bad floating point number: %s"
               s)
      | Fixed_point_transform_error err ->
          let s = Format.asprintf "%a" pp_fixed_point_transform_error err in
          Some s
      | _ -> None)

(* ------------------------------------------------------------------------- *)
(* Constant prettification *)

let rec log10 x =
  if x <= 0 then invalid_arg "log10"
  else if x <= 10 then 1
  else 1 + log10 (x / 10)

let rec pow x n =
  if n < 0 then invalid_arg "pow"
  else if n = 0 then 1
  else if n = 1 then x
  else x * pow x (n - 1)

let snap_to_grid ~inverse_scaling ~resolution x =
  if x = 0 then 0
  else
    let not_significant = log10 x / inverse_scaling in
    let grid = resolution * pow 10 not_significant in
    (x + grid - 1) / grid * grid

(* ------------------------------------------------------------------------- *)
(* Helpers *)

let int_of_float mode x =
  match mode with
  | Ceil -> int_of_float (Float.ceil x)
  | Floor -> int_of_float (Float.floor x)
  | Round -> int_of_float (Float.round x)

(* Checks that a floating point number is 'good' *)
let assert_fp_is_correct (x : float) =
  let fpcl = Float.classify_float x in
  match fpcl with
  | FP_subnormal | FP_infinite | FP_nan ->
      raise (Bad_floating_point_number (Bad_fpclass fpcl))
  | FP_normal when x <= 0.0 ->
      raise (Bad_floating_point_number Negative_or_zero_fp)
  | _ -> fpcl

let cast_to_int max_relative_error mode f : int =
  let i = int_of_float mode f in
  let fi = float_of_int i in
  let re = abs_float (f -. fi) /. abs_float f in
  if re > max_relative_error then
    Format.eprintf
      "Warning: Fixed_point_transform: Imprecise integer cast of %f to %d: %f \
       %% relative error@."
      f
      i
      (re *. 100.) ;
  i

(* ------------------------------------------------------------------------- *)

(* A minimal language in which to perform fixed-point multiplication of
   a 'size repr' by a float *)
module type Fixed_point_lang_sig = sig
  type 'a repr

  type size

  val shift_right : size repr -> int -> size repr

  val ( + ) : size repr -> size repr -> size repr

  val ( * ) : size repr -> size repr -> size repr

  val int : int -> size repr
end

module Fixed_point_arithmetic (Lang : Fixed_point_lang_sig) : sig
  (** [approx_mult precision i f] generates fixed-precision multiplication
      of [i * f] by positive constants. [precision] is a paramter to control
      how many bit shifts are used.
  *)
  val approx_mult :
    cast_mode -> int -> Lang.size Lang.repr -> float -> Lang.size Lang.repr
end = struct
  (* IEEE754 redux
     -------------
     Format of a (full-precision, ie 64 bit) floating point number:
     . 1 bit of sign
     . 11 bits of exponent, implicitly centered on 0 (-1022 to 1023)
     . 52 bits of mantissa (+ 1 implicit)

     value of a fp number = sign * mantissa * 2^{exponent - 1023}
     (with the exceptions of nans, infinities and denormalised numbers) *)

  (* Extract ith bit from a float. *)
  let bit (x : float) (i : int) =
    assert (not (i < 0 || i > 63)) ;
    let bits = Int64.bits_of_float x in
    Int64.(logand (shift_right bits i) one)

  (* All bits of a float:
     all_bits x = [sign] @ exponent @ mantissa *)
  let all_bits (x : float) : int64 list =
    List.init ~when_negative_length:() 64 (fun i -> bit x i)
    |> (* 64 >= 0 *) WithExceptions.Result.get_ok ~loc:__LOC__
    |> List.rev

  (* take n first elements from a list *)
  let take n l =
    let rec take n l acc =
      if n <= 0 then (List.rev acc, l)
      else
        match l with
        | [] -> Stdlib.failwith "take"
        | hd :: tl -> take (n - 1) tl (hd :: acc)
    in
    take n l []

  (* Split a float into sign/exponent/mantissa *)
  let split bits =
    let sign, rest = take 1 bits in
    let expo, rest = take 11 rest in
    let mant, _ = take 52 rest in
    (sign, expo, mant)

  (* Convert bits of exponent to int. *)
  let exponent_bits_to_int (l : int64 list) =
    let rec exponent_to_int (l : int64 list) (index : int) : int64 =
      match l with
      | [] -> -1023L
      | bit :: tail ->
          let tail = exponent_to_int tail (index + 1) in
          Int64.(add (shift_left bit index) tail)
    in
    exponent_to_int (List.rev l) 0

  (* Decompose a float into sign/exponent/mantissa *)
  let decompose (x : float) = split (all_bits x)

  let increment_bits exp bits =
    let rec f = function
      | [] -> (true, [])
      | 0L :: rest ->
          let up, rest = f rest in
          (false, (if up then 1L else 0L) :: rest)
      | 1L :: rest ->
          let up, rest = f rest in
          if up then (true, 0L :: rest) else (false, 1L :: rest)
      | _ -> assert false
    in
    let up, bits = f bits in
    if up then (exp + 1, 1L :: bits) else (exp, bits)

  (* Generate fixed-precision multiplication by positive constants. *)
  let approx_mult mode (precision : int) (i : Lang.size Lang.repr) (x : float) :
      Lang.size Lang.repr =
    assert (precision > 0) ;
    let fpcl = assert_fp_is_correct x in
    match fpcl with
    | FP_zero -> Lang.int 0
    | _ ->
        let _sign, exp, mant = decompose x in
        let exp = Int64.to_int @@ exponent_bits_to_int exp in
        (* The mantissa is always implicitly prefixed by one (except for
           denormalized numbers, excluded here). *)
        let bits = 1L :: mant in
        (* Get the top [precision] bits *)
        let bits, rest = take precision bits in
        (* Rounding. [bits_rounded] has [precision+1] bits at most.
           The number of ones in it is at most [precision] *)
        let exp, bits_rounded =
          match mode with
          | Ceil ->
              if List.for_all (fun x -> x = 0L) rest then (exp, bits)
              else increment_bits exp bits
          | Floor -> (exp, bits)
          | Round -> (
              match rest with
              | 1L :: _ -> increment_bits exp bits
              | [] | 0L :: _ -> (exp, bits)
              | _ -> assert false)
        in
        (* convert bits for < 1.0 to sum of powers of 2 computed with shifts *)
        let _, integer, fracs =
          List.fold_left
            (fun (k, integer, fracs) bit ->
              let integer, fracs =
                if bit = 1L then
                  if exp - k < 0 then
                    (integer, Lang.shift_right i (k - exp) :: fracs)
                  else (integer + (1 lsl (exp - k)), fracs)
                else (integer, fracs)
              in
              (k + 1, integer, fracs))
            (0, 0, [])
            bits_rounded
        in
        if integer = 0 then
          match List.rev fracs with
          | [] -> assert false
          | f :: fracs -> List.fold_left (fun sum t -> Lang.(sum + t)) f fracs
        else
          List.fold_left
            (fun t sum -> Lang.(sum + t))
            (if integer = 1 then i else Lang.(i * int integer))
            (List.rev fracs)
end

(* [Convert_mult] approximates [float] values to integers:

   - The multiplications of the form [float * term] or [term * float]
     to integer-only expressions.
   - [float] constants to its nearest grid point

   It is assumed that the term is _closed_, i.e. contains no free variables.
*)
module Convert_mult (P : sig
  val options : options
end)
(X : Costlang.S) : sig
  include Costlang.S with type size = X.size

  val prj : 'a repr -> 'a X.repr
end = struct
  type size = X.size

  type 'a repr = Term : 'a X.repr -> 'a repr | Float : float -> X.size repr

  let {precision; max_relative_error; cast_mode; inverse_scaling; resolution} =
    P.options

  module FPA = Fixed_point_arithmetic (X)

  (* Cast to int then snap to the nearest grid point *)
  let cast_and_snap f =
    X.int
    @@ snap_to_grid ~inverse_scaling ~resolution
    @@ cast_to_int max_relative_error cast_mode f

  (* Any float left is converted to the nearest grid point *)
  let prj (type a) (term : a repr) : a X.repr =
    match term with Term t -> t | Float f -> cast_and_snap f

  (* By default, any float is converted to the nearest grid point *)
  let lift_unop op x =
    match x with
    | Term x -> Term (op x)
    | Float x -> Term (op @@ cast_and_snap x)

  (* By default, any float is converted to the nearest grid point *)
  let lift_binop op x y =
    match (x, y) with
    | Term x, Term y -> Term (op x y)
    | Term x, Float y -> Term (op x (cast_and_snap y))
    | Float x, Term y -> Term (op (cast_and_snap x) y)
    | Float x, Float y -> Term (op (cast_and_snap x) (cast_and_snap y))

  let gensym : unit -> string =
    let x = ref 0 in
    fun () ->
      let v = !x in
      incr x ;
      "v" ^ string_of_int v

  let false_ = Term X.false_

  let true_ = Term X.true_

  let float f = Float f

  (* Integers are kept as they are *)
  let int i = Term (X.int i)

  let ( + ) = lift_binop X.( + )

  let sat_sub = lift_binop X.sat_sub

  let ( * ) x y =
    match (x, y) with
    | Term x, Term y -> Term X.(x * y)
    | Term x, Float y | Float y, Term x ->
        (* let-bind the non-constant term [x] to avoid copying it. *)
        Term
          (X.let_ ~name:(gensym ()) x (fun x ->
               FPA.approx_mult Ceil precision x y))
    | Float x, Float y -> Float (x *. y)

  let ( / ) = lift_binop X.( / )

  let max = lift_binop X.max

  let min = lift_binop X.min

  let shift_left x i = lift_unop (fun x -> X.shift_left x i) x

  let shift_right x i = lift_unop (fun x -> X.shift_right x i) x

  let log2 = lift_unop X.log2

  let sqrt = lift_unop X.sqrt

  let free ~name = raise (Fixed_point_transform_error (Term_is_not_closed name))

  let lt = lift_binop X.lt

  let eq = lift_binop X.eq

  let lam (type a b) ~name (f : a repr -> b repr) : (a -> b) repr =
    Term
      (X.lam ~name (fun x ->
           match f (Term x) with Term y -> y | Float f -> X.float f))

  let app (type a b) (fn : (a -> b) repr) (arg : a repr) : b repr =
    match (fn, arg) with
    | Term fn, Term arg -> Term (X.app fn arg)
    | Term fn, Float f -> Term (X.app fn (X.float f))
    | Float _, _ -> assert false

  let let_ (type a b) ~name (m : a repr) (fn : a repr -> b repr) : b repr =
    match m with
    | Term m ->
        Term
          (X.let_ ~name m (fun x ->
               match fn (Term x) with Term y -> y | Float f -> X.float f))
    | Float f ->
        Term
          (X.let_ ~name (X.float f) (fun x ->
               match fn (Term x) with Term y -> y | Float f -> X.float f))

  let if_ cond ift iff = Term (X.if_ (prj cond) (prj ift) (prj iff))
end

module Apply (P : sig
  val options : options
end) : Costlang.Transform =
functor (X : Costlang.S) -> Convert_mult (P) (X)