include module type of struct include Core_kernel.Bigstring end
Types and exceptions
type t =
(Base.Char.t, Bigarray.int8_unsigned_elt, Bigarray.c_layout)
Bigarray.Array1.t
include sig ... end
val bin_t : t Bin_prot.Type_class.t
val bin_read_t : t Bin_prot.Read.reader
val __bin_read_t__ : (Base.Int.t -> t) Bin_prot.Read.reader
val bin_reader_t : t Bin_prot.Type_class.reader
val bin_size_t : t Bin_prot.Size.sizer
val bin_write_t : t Bin_prot.Write.writer
val bin_writer_t : t Bin_prot.Type_class.writer
val bin_shape_t : Bin_prot.Shape.t
val compare : t -> t -> Base.Int.t
val t_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> t
val sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
Type of bigstrings which support hashing. Note that mutation invalidates previous hashes.
include sig ... end
val bin_t_frozen : t_frozen Bin_prot.Type_class.t
val bin_read_t_frozen : t_frozen Bin_prot.Read.reader
val __bin_read_t_frozen__ : (Base.Int.t -> t_frozen) Bin_prot.Read.reader
val bin_reader_t_frozen : t_frozen Bin_prot.Type_class.reader
val bin_size_t_frozen : t_frozen Bin_prot.Size.sizer
val bin_write_t_frozen : t_frozen Bin_prot.Write.writer
val bin_writer_t_frozen : t_frozen Bin_prot.Type_class.writer
val bin_shape_t_frozen : Bin_prot.Shape.t
val hash_fold_t_frozen :
Ppx_hash_lib.Std.Hash.state ->
t_frozen ->
Ppx_hash_lib.Std.Hash.state
val hash_t_frozen : t_frozen -> Ppx_hash_lib.Std.Hash.hash_value
val t_frozen_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> t_frozen
val sexp_of_t_frozen : t_frozen -> Ppx_sexp_conv_lib.Sexp.t
val equal : t Core_kernel__.Import.Equal.equal
Creation and string conversion
val init : Base.Int.t -> f:(Base.Int.t -> Base.Char.t) -> t
init n ~f
creates a bigstring t
of length n
, with t.{i} = f i
val of_string : ?pos:Base.Int.t -> ?len:Base.Int.t -> Base.String.t -> t
val of_bytes : ?pos:Base.Int.t -> ?len:Base.Int.t -> Base.Bytes.t -> t
val to_string : ?pos:Base.Int.t -> ?len:Base.Int.t -> t -> Base.String.t
val to_bytes : ?pos:Base.Int.t -> ?len:Base.Int.t -> t -> Base.Bytes.t
val concat : ?sep:t -> t Base.List.t -> t
concat ?sep list
returns the concatenation of list
with sep
in between each.
Checking
val check_args :
loc:Base.String.t ->
pos:Base.Int.t ->
len:Base.Int.t ->
t ->
Base.Unit.t
check_args ~loc ~pos ~len bstr
checks the position and length arguments pos
and len
for bigstrings bstr
.
val get_opt_len : t -> pos:Base.Int.t -> Base.Int.t Base.Option.t -> Base.Int.t
get_opt_len bstr ~pos opt_len
Accessors
val length : t -> Base.Int.t
val unsafe_destroy_and_resize : t -> len:Base.Int.t -> t
unsafe_destroy_and_resize bstr ~len
reallocates the memory backing bstr
and returns a new bigstring that starts at position 0 and has length len
. If len
is greater than length bstr
then the newly allocated memory will not be initialized.
Similar to unsafe_destroy
, this operation is safe unless you have passed the bigstring to another thread that is performing operations on it at the same time. Access to bstr
after this operation will yield array bounds exceptions.
val sub_shared : ?pos:Base.Int.t -> ?len:Base.Int.t -> t -> t
sub_shared ?pos ?len bstr
val get : t -> Base.Int.t -> Base.Char.t
get t pos
returns the character at pos
val set : t -> Base.Int.t -> Base.Char.t -> Base.Unit.t
set t pos
sets the character at pos
val is_mmapped : t -> Base.Bool.t
Blitting
blit ~src ?src_pos ?src_len ~dst ?dst_pos ()
blits src_len
characters from src
starting at position src_pos
to dst
at position dst_pos
.
val blit : (t, t) Base__.Blit_intf.blit
val blito : (t, t) Base__.Blit_intf.blito
val unsafe_blit : (t, t) Base__.Blit_intf.blit
val sub : (t, t) Base__.Blit_intf.sub
val subo : (t, t) Base__.Blit_intf.subo
Reading/writing bin-prot
These functions write the "size-prefixed" bin-prot format that is used by, e.g., async's Writer.write_bin_prot
, Reader.read_bin_prot
and Unpack_buffer.Unpack_one.create_bin_prot
.
val write_bin_prot :
t ->
?pos:Base.Int.t ->
'a Bin_prot.Type_class.writer ->
'a ->
Base.Int.t
write_bin_prot t writer a
writes a
to t
starting at pos
, and returns the index in t
immediately after the last byte written. It raises if pos < 0
or if a
doesn't fit in t
.
val read_bin_prot :
t ->
?pos:Base.Int.t ->
?len:Base.Int.t ->
'a Bin_prot.Type_class.reader ->
('a * Base.Int.t) Core_kernel.Or_error.t
The read_bin_prot*
functions read from the region of t
starting at pos
of length len
. They return the index in t
immediately after the last byte read. They raise if pos
and len
don't describe a region of t
.
val read_bin_prot_verbose_errors :
t ->
?pos:Base.Int.t ->
?len:Base.Int.t ->
'a Bin_prot.Type_class.reader ->
[ `Invalid_data of Core_kernel.Error.t
| `Not_enough_data
| `Ok of 'a * Base.Int.t ]
Search
val find :
?pos:Base.Int.t ->
?len:Base.Int.t ->
Base.Char.t ->
t ->
Base.Int.t Base.Option.t
find ?pos ?len char t
returns Some i
for the smallest i >= pos
such that t.{i} = char
, or None
if there is no such i
.
val unsafe_find :
t ->
Base.Char.t ->
pos:Base.Int.t ->
len:Base.Int.t ->
Base.Int.t
Same as find
, but does no bounds checking, and returns a negative value instead of None
if char
is not found.
Destruction
val unsafe_destroy : t -> Base.Unit.t
unsafe_destroy bstr
destroys the bigstring by deallocating its associated data or, if memory-mapped, unmapping the corresponding file, and setting all dimensions to zero. This effectively frees the associated memory or address-space resources instantaneously. This feature helps working around a bug in the current OCaml runtime, which does not correctly estimate how aggressively to reclaim such resources.
This operation is safe unless you have passed the bigstring to another thread that is performing operations on it at the same time. Access to the bigstring after this operation will yield array bounds exceptions.
Accessors for parsing binary values, analogous to binary_packing
These are in Bigstring rather than a separate module because:
1) Existing binary_packing requires copies and does not work with bigstrings 2) The accessors rely on the implementation of bigstring, and hence should change should the implementation of bigstring move away from Bigarray. 3) Bigstring already has some external C functions, so it didn't require many changes to the OMakefile ^_^.
In a departure from Binary_packing, the naming conventions are chosen to be close to C99 stdint types, as it's a more standard description and it is somewhat useful in making compact macros for the implementations. The accessor names contain endian-ness to allow for branch-free implementations
<accessor> ::= <unsafe><operation><type><endian> <unsafe> ::= unsafe_ | '' <operation> ::= get_ | set_ <type> ::= int8 | uint8 | int16 | uint16 | int32 | uint32 | int64 | uint64 <endian> ::= _le | _be | ''
The "unsafe_" prefix indicates that these functions do no bounds checking.
val get_int8 : t -> pos:Base.Int.t -> Base.Int.t
val set_int8 : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val get_uint8 : t -> pos:Base.Int.t -> Base.Int.t
val set_uint8 : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_int8 : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_int8 : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_uint8 : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_uint8 : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
16-bit methods
val get_int16_le : t -> pos:Base.Int.t -> Base.Int.t
val get_int16_be : t -> pos:Base.Int.t -> Base.Int.t
val set_int16_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val set_int16_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_int16_le : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_int16_be : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_int16_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_int16_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val get_uint16_le : t -> pos:Base.Int.t -> Base.Int.t
val get_uint16_be : t -> pos:Base.Int.t -> Base.Int.t
val set_uint16_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val set_uint16_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_uint16_le : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_uint16_be : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_uint16_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_uint16_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
32-bit methods
val get_int32_le : t -> pos:Base.Int.t -> Base.Int.t
val get_int32_be : t -> pos:Base.Int.t -> Base.Int.t
val set_int32_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val set_int32_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_int32_le : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_int32_be : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_int32_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_int32_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val get_uint32_le : t -> pos:Base.Int.t -> Base.Int.t
val get_uint32_be : t -> pos:Base.Int.t -> Base.Int.t
val set_uint32_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val set_uint32_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_uint32_le : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_uint32_be : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_uint32_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_uint32_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
Similar to the usage in binary_packing, the below methods are treating the value being read (or written), as an ocaml immediate integer, as such it is actually 63 bits. If the user is confident that the range of values used in practice will not require 64-bit precision (i.e. Less than Max_Long), then we can avoid allocation and use an immediate. If the user is wrong, an exception will be thrown (for get).
64-bit signed values
val get_int64_le_exn : t -> pos:Base.Int.t -> Base.Int.t
val get_int64_be_exn : t -> pos:Base.Int.t -> Base.Int.t
val get_int64_le_trunc : t -> pos:Base.Int.t -> Base.Int.t
val get_int64_be_trunc : t -> pos:Base.Int.t -> Base.Int.t
val set_int64_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val set_int64_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_int64_le_exn : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_int64_be_exn : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_int64_le_trunc : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_int64_be_trunc : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_int64_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_int64_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
64-bit unsigned values
val get_uint64_be_exn : t -> pos:Base.Int.t -> Base.Int.t
val get_uint64_le_exn : t -> pos:Base.Int.t -> Base.Int.t
val set_uint64_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val set_uint64_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_get_uint64_be_exn : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_get_uint64_le_exn : t -> pos:Base.Int.t -> Base.Int.t
val unsafe_set_uint64_le : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
val unsafe_set_uint64_be : t -> pos:Base.Int.t -> Base.Int.t -> Base.Unit.t
32-bit methods with full precision
64-bit methods with full precision
val get_tail_padded_fixed_string :
padding:Base.Char.t ->
t ->
pos:Base.Int.t ->
len:Base.Int.t ->
Base.Unit.t ->
Base.String.t
Similar to Binary_packing.unpack_tail_padded_fixed_string
and .pack_tail_padded_fixed_string
.
val set_tail_padded_fixed_string :
padding:Base.Char.t ->
t ->
pos:Base.Int.t ->
len:Base.Int.t ->
Base.String.t ->
Base.Unit.t
val get_head_padded_fixed_string :
padding:Base.Char.t ->
t ->
pos:Base.Int.t ->
len:Base.Int.t ->
Base.Unit.t ->
Base.String.t
val set_head_padded_fixed_string :
padding:Base.Char.t ->
t ->
pos:Base.Int.t ->
len:Base.Int.t ->
Base.String.t ->
Base.Unit.t