Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
PrcSourcePrecision-Recall curve construction and AUC computation
References: 1 The binormal assumption on precision-recall curves. Kay H. Brodersen, Cheng Soon Ong, Klaas E. Stephan and Joachim M. Buhmann
2 Area Under the Precision-Recall Curve: Point Estimates and Confidence Intervals. Kendrick Boyd, Kevin H. Eng and C. David Page
3 Precision-Recall-Gain Curves: PR Analysis Done Right. Peter A. Flach and Meelis Kull
4 The Relationship Between Precision-Recall and ROC Curves. Jesse Davis and Mark Goadrich
5 Realisable Classifiers: Improving Operating Performance on Variable Cost Problems. M.J.J. Scott, M. Niranjan, R.W. Prager
operating_points d computes the list of score threshold, recall and precision triplets, sorted by decreasing threshold.
logit_confidence_interval ~alpha ~theta_hat ~n computes an asymptotically valid confidence interval at level 1 - alpha, when the estimate theta_hat was obtained from a sample with n_pos positive observations.
val bootstrap_confidence_interval :
?niter:int ->
alpha:float ->
Gsl.Rng.t ->
dataset ->
f:(dataset -> float) ->
float * floatbootstrap_confidence_interval ?niter ~alpha rng d ~f computes a bootstrap confidence interval at level 1 - alpha for the values produces by f, using n_iter bootstrap iterations.
Binormal model