package owl-base

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
Type definition and constants
type t = Stdlib.Complex.t

Type definition for a complex number.

val zero : t

Constant value representing the complex number zero (0 + 0i).

val one : t

Constant value representing the complex number one (1 + 0i).

val i : t

Constant value representing the imaginary unit i (0 + 1i).

Unary functions
val neg : t -> t

neg z returns the negation of the complex number z. If z = a + bi, then neg z = -a - bi.

val abs : t -> float

abs z returns the magnitude (absolute value) of the complex number z. This is computed as sqrt(Re(z)^2 + Im(z)^2).

val abs2 : t -> float

abs2 z returns the squared magnitude of the complex number z. This is computed as Re(z)^2 + Im(z)^2.

val logabs : t -> float

logabs z returns the natural logarithm of the magnitude of the complex number z.

val conj : t -> t

conj z returns the complex conjugate of the complex number z. If z = a + bi, then conj z = a - bi.

val inv : t -> t

inv z returns the multiplicative inverse of the complex number z. This is computed as 1 / z.

val sqrt : t -> t

sqrt z returns the square root of the complex number z.

val exp : t -> t

exp z returns the exponential of the complex number z, calculated as e^z.

val exp2 : t -> t

exp2 z returns 2 raised to the power of the complex number z, calculated as 2^z.

val exp10 : t -> t

exp10 z returns 10 raised to the power of the complex number z, calculated as 10^z.

val expm1 : t -> t

expm1 z returns the value of exp(z) - 1, providing a more accurate result for small values of z.

val log : t -> t

log z returns the natural logarithm of the complex number z.

val log2 : t -> t

log2 z returns the base-2 logarithm of the complex number z.

val log10 : t -> t

log10 z returns the base-10 logarithm of the complex number z.

val log1p : t -> t

log1p z returns the natural logarithm of (1 + z), providing a more accurate result for small values of z.

val sin : t -> t

sin z returns the sine of the complex number z.

val cos : t -> t

cos z returns the cosine of the complex number z.

val tan : t -> t

tan z returns the tangent of the complex number z.

val cot : t -> t

cot z returns the cotangent of the complex number z.

val sec : t -> t

sec z returns the secant of the complex number z.

val csc : t -> t

csc z returns the cosecant of the complex number z.

val sinh : t -> t

sinh z returns the hyperbolic sine of the complex number z.

val cosh : t -> t

cosh z returns the hyperbolic cosine of the complex number z.

val tanh : t -> t

tanh z returns the hyperbolic tangent of the complex number z.

val sech : t -> t

sech z returns the hyperbolic secant of the complex number z.

val csch : t -> t

csch z returns the hyperbolic cosecant of the complex number z.

val coth : t -> t

coth z returns the hyperbolic cotangent of the complex number z.

val asin : t -> t

asin z returns the arcsine of the complex number z.

val acos : t -> t

acos z returns the arccosine of the complex number z.

val atan : t -> t

atan z returns the arctangent of the complex number z.

val asec : t -> t

asec z returns the arcsecant of the complex number z.

val acsc : t -> t

acsc z returns the arccosecant of the complex number z.

val acot : t -> t

acot z returns the arccotangent of the complex number z.

val asinh : t -> t

asinh z returns the inverse hyperbolic sine of the complex number z.

val acosh : t -> t

acosh z returns the inverse hyperbolic cosine of the complex number z.

val atanh : t -> t

atanh z returns the inverse hyperbolic tangent of the complex number z.

val asech : t -> t

asech z returns the inverse hyperbolic secant of the complex number z.

val acsch : t -> t

acsch z returns the inverse hyperbolic cosecant of the complex number z.

val acoth : t -> t

acoth z returns the inverse hyperbolic cotangent of the complex number z.

val arg : t -> float

arg x returns the angle of a complex number x.

val phase : t -> float

phase x returns the phase of a complex number x.

val floor : t -> t

floor x

val ceil : t -> t

ceil x

val round : t -> t

round x

val trunc : t -> t

trunc x

val fix : t -> t

fix x

Binary functions
val add : t -> t -> t

add z1 z2 returns the sum of the complex numbers z1 and z2.

val sub : t -> t -> t

sub z1 z2 returns the difference of the complex numbers z1 and z2.

val mul : t -> t -> t

mul z1 z2 returns the product of the complex numbers z1 and z2.

val div : t -> t -> t

div z1 z2 returns the quotient of the complex numbers z1 and z2.

val add_re : t -> float -> t

add_re z r adds the real number r to the real part of the complex number z. Returns a new complex number with the real part increased by r.

val add_im : t -> float -> t

add_im z i adds the real number i to the imaginary part of the complex number z. Returns a new complex number with the imaginary part increased by i.

val sub_re : t -> float -> t

sub_re z r subtracts the real number r from the real part of the complex number z. Returns a new complex number with the real part decreased by r.

val sub_im : t -> float -> t

sub_im z i subtracts the real number i from the imaginary part of the complex number z. Returns a new complex number with the imaginary part decreased by i.

val mul_re : t -> float -> t

mul_re z r multiplies the real part of the complex number z by the real number r. Returns a new complex number with the real part scaled by r.

val mul_im : t -> float -> t

mul_im z i multiplies the imaginary part of the complex number z by the real number i. Returns a new complex number with the imaginary part scaled by i.

val div_re : t -> float -> t

div_re z r divides the real part of the complex number z by the real number r. Returns a new complex number with the real part divided by r.

val div_im : t -> float -> t

div_im z i divides the imaginary part of the complex number z by the real number i. Returns a new complex number with the imaginary part divided by i.

val pow : t -> t -> t

pow z1 z2 raises the complex number z1 to the power of z2. Returns a new complex number representing z1 raised to z2.

val polar : float -> float -> t

polar r theta creates a complex number from the polar coordinates r (magnitude) and theta (angle in radians). Returns a new complex number.

val rect : float -> float -> t

rect r phi returns a complex number with polar coordinates r and phi. Equivalent to polar r phi.

Comparison functions
val equal : t -> t -> bool

equal z1 z2 returns true if the complex numbers z1 and z2 are equal, false otherwise.

val not_equal : t -> t -> bool

not_equal z1 z2 returns true if the complex numbers z1 and z2 are not equal, false otherwise.

val less : t -> t -> bool

less z1 z2 returns true if the magnitude of the complex number z1 is less than that of z2.

val greater : t -> t -> bool

greater z1 z2 returns true if the magnitude of the complex number z1 is greater than that of z2.

val less_equal : t -> t -> bool

less_equal z1 z2 returns true if the magnitude of the complex number z1 is less than or equal to that of z2.

val greater_equal : t -> t -> bool

greater_equal z1 z2 returns true if the magnitude of the complex number z1 is greater than or equal to that of z2.

Helper functions
val complex : float -> float -> t

complex re im returns a complex number {re; im}.

val of_tuple : (float * float) -> t

of_tuple (re, im) returns a complex number {re; im}.

val to_tuple : t -> float * float

to_tuple x converts a complex number to tuple (x.re; x.im).

val is_nan : t -> bool

is_nan x returns true if x.re is nan or x.im is nan.

val is_inf : t -> bool

is_inf x returns true if either x.re or x.im is infinity or neg_infinity.

val is_normal : t -> bool

is_normal x returns true if both x.re and x.im are normal.

OCaml

Innovation. Community. Security.