package neural_nets_lib

  1. Overview
  2. Docs
val row_var : (v:row_var -> beg_dims:dim Base.list -> bcast) Variantslib.Variant.t
val broadcastable : bcast Variantslib.Variant.t
val fold : init:'acc__0 -> row_var: ('acc__0 -> (v:row_var -> beg_dims:dim Base.list -> bcast) Variantslib.Variant.t -> 'acc__1) -> broadcastable:('acc__1 -> bcast Variantslib.Variant.t -> 'acc__2) -> 'acc__2
val iter : row_var: ((v:row_var -> beg_dims:dim Base.list -> bcast) Variantslib.Variant.t -> Base.unit) -> broadcastable:(bcast Variantslib.Variant.t -> Base.unit) -> Base.unit
val map : bcast -> row_var: ((v:row_var -> beg_dims:dim Base.list -> bcast) Variantslib.Variant.t -> v:row_var -> beg_dims:dim Base.list -> 'result__) -> broadcastable:(bcast Variantslib.Variant.t -> 'result__) -> 'result__
val make_matcher : row_var: ((v:row_var -> beg_dims:dim Base.list -> bcast) Variantslib.Variant.t -> 'acc__0 -> (v:row_var -> beg_dims:dim Base.list -> 'result__) * 'acc__1) -> broadcastable: (bcast Variantslib.Variant.t -> 'acc__1 -> (Base.unit -> 'result__) * 'acc__2) -> 'acc__0 -> (bcast -> 'result__) * 'acc__2
val to_rank : bcast -> Base.int
val to_name : bcast -> Base.string
val descriptions : (Base.string * Base.int) Base.list
OCaml

Innovation. Community. Security.