Legend:
Library
Module
Module type
Parameter
Class
Class type
Library
Module
Module type
Parameter
Class
Class type
include module type of struct include Initial_TDSL end
val term :
label:Base.string Base.list ->
?batch_dims:Base.int Base.list ->
?input_dims:Base.int Base.list ->
?output_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
?init_op:Tensor.init_op ->
?fetch_op:(v:Tensor.tn -> Tensor.fetch_op) ->
Base.unit ->
Tensor.t
val number :
?label:Base.string Base.list ->
?axis_label:Base.string ->
Base.float ->
Tensor.t
val ndarray :
?label:Base.string Base.list ->
?batch_dims:Base.int Base.list ->
?input_dims:Base.int Base.list ->
?output_dims:Base.int Base.list ->
?batch_axes:(Base.string * Base.int) Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?strict:Base.bool ->
Base.float Base.array ->
Tensor.t
val param :
?input_dims:Base.int Base.list ->
?output_dims:Base.int Base.list ->
?input_axes:(Base.string * Base.int) Base.list ->
?output_axes:(Base.string * Base.int) Base.list ->
?deduced:Shape.deduce_within_shape ->
?strict:Base.bool ->
?values:Base.float Base.array ->
Base.string ->
Tensor.t
module O = DO
val einsum :
?label:Base.string list ->
Base.string ->
Tensor.t ->
Tensor.t ->
Tensor.t
val outer_sum :
?label:Base.string list ->
Base.string ->
Tensor.t ->
Tensor.t ->
Tensor.t
val einsum1 : ?label:Base.string list -> Base.string -> Tensor.t -> Tensor.t
val range :
?label:Base.string list ->
?axis_label:Base.string ->
Base.Int.t ->
Tensor.t
val range_of_shape :
?label:Base.string list ->
?batch_dims:Base.Int.t Base.List.t ->
?input_dims:Base.Int.t Base.List.t ->
?output_dims:Base.Int.t Base.List.t ->
?batch_axes:(Base.string * Base.Int.t) Base.List.t ->
?input_axes:(Base.string * Base.Int.t) Base.List.t ->
?output_axes:(Base.string * Base.Int.t) Base.List.t ->
unit ->
Tensor.t
val stop_gradient : ?label:Base.string list -> Tensor.t -> Tensor.t
val init_const :
l:Base.string ->
?strict:Base.bool ->
?b:Base.int Base.list ->
?i:Base.int Base.list ->
o:Base.int Base.list ->
Base.float Base.array ->
Tensor.t
The input i
dimensions default to empty. The batch dimensions will be inferred if omitted. strict
controls whether Constant_fill
will try to fit the given values in the tensor and contribute to shape inference. If it is not provided explicitly, it will be true
if b
is omitted, and false
otherwise.
val init_param :
l:Base.string ->
?b:Base.int Base.list ->
?i:Base.int Base.list ->
?o:Base.int Base.list ->
Base.float Base.array ->
Tensor.t
It's like `Tensor.param` but without shape inference.