Source file info.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
(** This module defines data structures and operations for handling grammar
information in a structured way. It includes representations for terminals,
non-terminals, productions, and LR states, along with their transitions and
reductions. The module is designed to work with Menhir's grammar
representation and extends it with additional functionality for
convenience. *)
open Utils
open Misc
open Fix.Indexing
module type GRAMMAR = MenhirSdk.Cmly_api.GRAMMAR
module UC_terminal = Unsafe_cardinal()
module UC_nonterminal = Unsafe_cardinal()
module UC_production = Unsafe_cardinal()
module UC_lr0 = Unsafe_cardinal()
module UC_lr1 = Unsafe_cardinal()
module UC_item = Unsafe_cardinal()
module UC_goto_transition = Unsafe_cardinal()
module UC_shift_transition = Unsafe_cardinal()
module UC_reduction = Unsafe_cardinal()
type 'g terminal = 'g UC_terminal.t
type 'g nonterminal = 'g UC_nonterminal.t
type 'g symbol = ('g terminal, 'g nonterminal) Sum.n
type 'g production = 'g UC_production.t
type 'g item = 'g UC_item.t
type 'g lr0 = 'g UC_lr0.t
type 'g lr1 = 'g UC_lr1.t
type 'g goto_transition = 'g UC_goto_transition.t
type 'g shift_transition = 'g UC_shift_transition.t
type 'g transition = ('g goto_transition, 'g shift_transition) Sum.n
type 'g reduction = 'g UC_reduction.t
type 'g grammar = {
raw: (module MenhirSdk.Cmly_api.GRAMMAR);
terminal_n : 'g terminal cardinal;
terminal_all: 'g terminal indexset;
terminal_regular: 'g terminal indexset;
terminal_table : (string, 'g terminal index) Hashtbl.t;
nonterminal_n : 'g nonterminal cardinal;
nonterminal_all: 'g nonterminal indexset;
nonterminal_table : (string, 'g nonterminal index) Hashtbl.t;
symbol_all : 'g symbol indexset;
production_lhs : ('g production, 'g nonterminal index) vector;
production_rhs : ('g production, 'g symbol index array) vector;
production_all : 'g production indexset;
item_productions : ('g item, 'g production index) vector;
item_offsets : ('g production, int) vector;
lr0_items : ('g lr0, 'g item indexset) vector;
lr0_incoming : ('g lr0, 'g symbol index option) vector;
lr0_is_entrypoint : ('g lr0, 'g production index option) vector;
transition_source : ('g transition, 'g lr1 index) vector;
transition_target : ('g transition, 'g lr1 index) vector;
transition_shift_sym : ('g shift_transition, 'g terminal index) vector;
transition_goto_sym : ('g goto_transition, 'g nonterminal index) vector;
transition_goto_table: ('g lr1, ('g nonterminal, 'g goto_transition index) indexmap) vector;
transition_predecessors: ('g lr1, 'g transition indexset) vector;
transition_successors: ('g lr1, 'g transition indexset) vector;
transition_accepting : 'g goto_transition indexset;
lr1_all : 'g lr1 indexset;
lr1_lr0 : ('g lr1, 'g lr0 index) vector;
lr1_wait : 'g lr1 indexset;
lr1_accepting : 'g lr1 indexset;
lr1_reduce_on : ('g lr1, 'g terminal indexset) vector;
lr1_shift_on : ('g lr1, 'g terminal indexset) vector;
lr1_reject : ('g lr1, 'g terminal indexset) vector;
lr1_entrypoints : 'g lr1 indexset;
lr1_entrypoint_table : (string, 'g lr1 index) Hashtbl.t;
lr1_predecessors : ('g lr1, 'g lr1 indexset lazy_stream) vector;
reduction_state : ('g reduction, 'g lr1 index) vector;
reduction_production : ('g reduction, 'g production index) vector;
reduction_lookaheads : ('g reduction, 'g terminal indexset) vector;
reduction_from_lr1 : ('g lr1, 'g reduction indexset) vector;
}
let raw g = g.raw
module Lift() = struct
type g
let loaded = ref false
module Load_grammar(G : MenhirSdk.Cmly_api.GRAMMAR) = struct
let () =
if !loaded then
invalid_arg "Info.Lift.Load: grammar can be loaded only once"
else loaded := true
module Import
(UC : UNSAFE_CARDINAL)
(M : sig type t val count : int val of_int : int -> t val to_int : t -> int end) =
struct
include UC.Const(struct type t = g let cardinal = M.count end)
let of_g i = Index.of_int n (M.to_int i)
let to_g i = M.of_int (Index.to_int i)
let all = IndexSet.all n
end
module Terminal = struct
include Import(UC_terminal)(G.Terminal)
let regular = IndexSet.init_from_set n (fun t ->
match G.Terminal.kind (G.Terminal.of_int (t : _ index :> int)) with
| `EOF | `REGULAR -> true
| `PSEUDO | `ERROR -> false
)
end
module Nonterminal = Import(UC_nonterminal)(G.Nonterminal)
module Symbol = struct
let n = Sum.cardinal Terminal.n Nonterminal.n
let all = IndexSet.all n
let of_g = function
| G.T t -> Sum.inj_l (Terminal.of_g t)
| G.N n -> Sum.inj_r Terminal.n (Nonterminal.of_g n)
end
module Production = struct
include Import(UC_production)(G.Production)
let lhs = Vector.init n (fun p -> Nonterminal.of_g (G.Production.lhs (to_g p)))
let rhs =
Vector.init n @@ fun p ->
Array.map
(fun (sym,_,_) -> Symbol.of_g sym)
(G.Production.rhs (to_g p))
end
module Item = struct
let count = ref 0
let offsets =
Vector.init Production.n (fun prod ->
let position = !count in
count := !count + Array.length Production.rhs.:(prod) + 1;
position
)
include UC_item.Const(struct type t = g let cardinal = !count end)
let productions =
Vector.make' n (fun () -> Index.of_int Production.n 0)
let () =
let enum = Index.enumerate n in
Index.iter Production.n @@ fun prod ->
for _ = 0 to Array.length Production.rhs.:(prod) do
productions.:(enum ()) <- prod
done
end
module Lr0 = struct
include Import(UC_lr0)(G.Lr0)
let items = Vector.init n @@ fun lr0 ->
to_g lr0
|> G.Lr0.items
|> List.map (fun (p,pos) -> Index.of_int Item.n (Item.offsets.:(Production.of_g p) + pos))
|> IndexSet.of_list
let incoming = Vector.init n @@ fun lr0 ->
to_g lr0
|> G.Lr0.incoming
|> Option.map Symbol.of_g
let is_entrypoint =
Vector.map (fun items ->
if not (IndexSet.is_singleton items) then
None
else
let item = IndexSet.choose items in
let prod = Item.productions.:(item) in
if Index.to_int item = Item.offsets.:(prod) then
Some prod
else
None
) items
end
module Lr1 = struct
include Import(UC_lr1)(G.Lr1)
let lr0 = Vector.init n @@ fun lr1 ->
Lr0.of_g (G.Lr1.lr0 (to_g lr1))
end
module Transition =
struct
let shift_count, goto_count =
let shift_count = ref 0 in
let goto_count = ref 0 in
G.Lr1.iter begin fun lr1 ->
List.iter begin fun (sym, _) ->
match sym with
| G.T _ -> incr shift_count
| G.N _ -> incr goto_count
end (G.Lr1.transitions lr1)
end;
(!shift_count, !goto_count)
module Goto = UC_goto_transition.Const(struct type t = g let cardinal = goto_count end)
module Shift = UC_shift_transition.Const(struct type t = g let cardinal = shift_count end)
let any = Sum.cardinal Goto.n Shift.n
let of_goto = Sum.inj_l
let of_shift = Sum.inj_r Goto.n
let sources = Vector.make' any (fun () -> Index.of_int Lr1.n 0)
let targets = Vector.make' any (fun () -> Index.of_int Lr1.n 0)
let shift_sym = Vector.make' Shift.n (fun () -> Index.of_int Terminal.n 0)
let goto_sym = Vector.make' Goto.n (fun () -> Index.of_int Nonterminal.n 0)
let goto_table = Vector.make Lr1.n IndexMap.empty
let predecessors = Vector.make Lr1.n IndexSet.empty
let successors =
let next_goto = Index.enumerate Goto.n in
let next_shift = Index.enumerate Shift.n in
Vector.init Lr1.n begin fun source ->
List.fold_right begin fun (sym, target) acc ->
let target = Lr1.of_g target in
let index = match sym with
| G.T t ->
let t = Terminal.of_g t in
let index = next_shift () in
shift_sym.:(index) <- t;
of_shift index
| G.N nt ->
let nt = Nonterminal.of_g nt in
let index = next_goto () in
goto_sym.:(index) <- nt;
goto_table.@(source) <- IndexMap.add nt index;
of_goto index
in
sources.:(index) <- source;
targets.:(index) <- target;
predecessors.@(target) <- IndexSet.add index;
IndexSet.add index acc
end (G.Lr1.transitions (Lr1.to_g source)) IndexSet.empty
end
let accepting =
let acc = ref IndexSet.empty in
Index.rev_iter Lr1.n begin fun lr1 ->
match Lr0.is_entrypoint.:(Lr1.lr0.:(lr1)) with
| None -> ()
| Some prod ->
let sym =
match Sum.prj Terminal.n Production.rhs.:(prod).(0) with
| L _ -> assert false
| R nt -> nt
in
acc := IndexSet.fold_right (fun acc tr ->
match Sum.prj Goto.n tr with
| L gt when goto_sym.:(gt) = sym -> IndexSet.add gt acc
| _ -> acc
) !acc successors.:(lr1)
end;
!acc
end
module Reduction = struct
let n = ref 0
let raw =
let import_red reds =
reds
|> List.filter_map (fun (t, p) ->
match G.Production.kind p with
| `START -> None
| `REGULAR -> Some (Production.of_g p, Terminal.of_g t)
)
|> Misc.group_by
~compare:(fun (p1,_) (p2,_) -> compare_index p1 p2)
~group:(fun (p,t) ps -> p, IndexSet.of_list (t :: List.map snd ps))
|> List.sort (fun (p1,_) (p2,_) ->
let l1 = Array.length Production.rhs.:(p1) in
let l2 = Array.length Production.rhs.:(p2) in
let c = Int.compare l1 l2 in
if c <> 0 then c else
compare_index Production.lhs.:(p1) Production.lhs.:(p2)
)
in
let import_lr1 lr1 =
let reds = import_red (G.Lr1.get_reductions (Lr1.to_g lr1)) in
n := !n + List.length reds;
reds
in
Vector.init Lr1.n import_lr1
include UC_reduction.Const(struct type t = g let cardinal = !n end)
let state = Vector.make' n (fun () -> Index.of_int Lr1.n 0)
let production = Vector.make' n (fun () -> Index.of_int Production.n 0)
let lookaheads = Vector.make n IndexSet.empty
let from_lr1 =
let enum = Index.enumerate n in
Vector.mapi (fun lr1 reds ->
List.fold_left (fun set (prod, la) ->
let i = enum () in
state.:(i) <- lr1;
production.:(i) <- prod;
lookaheads.:(i) <- la;
IndexSet.add i set
) IndexSet.empty reds
) raw
end
let grammar = {
raw = (module G);
terminal_n = Terminal.n;
terminal_all = Terminal.all;
terminal_regular = Terminal.regular;
terminal_table = Hashtbl.create 7;
nonterminal_n = Nonterminal.n;
nonterminal_all = Nonterminal.all;
nonterminal_table = Hashtbl.create 7;
symbol_all = Symbol.all;
production_lhs = Production.lhs;
production_rhs = Production.rhs;
production_all = Production.all;
item_productions = Item.productions;
item_offsets = Item.offsets;
lr0_items = Lr0.items;
lr0_incoming = Lr0.incoming;
lr0_is_entrypoint = Lr0.is_entrypoint;
transition_source = Transition.sources;
transition_target = Transition.targets;
transition_shift_sym = Transition.shift_sym;
transition_goto_sym = Transition.goto_sym;
transition_goto_table = Transition.goto_table;
transition_predecessors = Transition.predecessors;
transition_successors = Transition.successors;
transition_accepting = Transition.accepting;
lr1_all = Lr1.all;
lr1_lr0 = Lr1.lr0;
lr1_wait = Lr1_extra.wait;
lr1_accepting = Lr1_extra.accepting;
lr1_reduce_on = Lr1_extra.reduce_on;
lr1_shift_on = Lr1_extra.shift_on;
lr1_reject = Lr1_extra.reject;
lr1_entrypoints = Lr1_extra.entrypoints;
lr1_entrypoint_table = Lr1_extra.entrypoint_table;
lr1_predecessors = iterate_vector Lr1_extra.predecessors;
reduction_state = Reduction.state;
reduction_production = Reduction.production;
reduction_lookaheads = Reduction.lookaheads;
reduction_from_lr1 = Reduction.from_lr1;
}
end
end
module type INDEXED = sig
type 'g n
val cardinal : 'g grammar -> 'g n cardinal
val of_int : 'g grammar -> int -> 'g n index
end
module Terminal = struct
type 'g n = 'g terminal
let cardinal g = g.terminal_n
let of_int g i = Index.of_int (cardinal g) i
let to_string g i =
let open (val g.raw) in
Terminal.name (Terminal.of_int (Index.to_int i))
let all g = g.terminal_all
let regular g = g.terminal_regular
let semantic_value g i =
let open (val g.raw) in
Terminal.typ (Terminal.of_int (Index.to_int i))
let intersect g a b =
if a == g.terminal_all then b
else if b == g.terminal_all then a
else IndexSet.inter a b
let is_error g i =
let open (val g.raw) in
match Terminal.kind (Terminal.of_int (i : _ index :> int)) with
| `ERROR -> true
| _ -> false
let lookaheads_to_string g la =
match IndexSet.cardinal la with
| n when n > 10 -> Printf.sprintf "<%d lookaheads>" n
| _ -> string_concat_map ~wrap:("<",">") ","
(to_string g) (IndexSet.elements la)
let terminal_table g =
if Hashtbl.length g.terminal_table = 0 then
Index.iter (cardinal g)
(fun t -> Hashtbl.add g.terminal_table (to_string g t) t);
g.terminal_table
let find g ?(approx=3) name =
let table = terminal_table g in
match Hashtbl.find_opt table name, approx with
| Some t, _ -> Result.Ok t
| None, 0 -> Result.Error []
| None, dist ->
Result.Error
(Damerau_levenshtein.filter_approx ~dist name (Hashtbl.to_seq table))
end
module Nonterminal = struct
type 'g n = 'g nonterminal
let cardinal g = g.nonterminal_n
let of_int g i = Index.of_int (cardinal g) i
let all g = g.nonterminal_all
let to_string g i =
let open (val g.raw) in
Nonterminal.name (Nonterminal.of_int (Index.to_int i))
let to_mangled_string g i =
let open (val g.raw) in
Nonterminal.mangled_name (Nonterminal.of_int (Index.to_int i))
let find_mangled g str =
let enum = Index.enumerate (cardinal g) in
let rec loop () =
let i = enum () in
if to_mangled_string g i = str then
i
else
loop ()
in
match loop () with
| i -> Some i
| exception Index.End_of_set -> None
let kind g i =
let open (val g.raw) in
Nonterminal.kind (Nonterminal.of_int (Index.to_int i))
let semantic_value g i =
let open (val g.raw) in
Nonterminal.typ (Nonterminal.of_int (Index.to_int i))
let nullable g i =
let open (val g.raw) in
Nonterminal.nullable (Nonterminal.of_int (Index.to_int i))
let first g i =
let open (val g.raw) in
Nonterminal.of_int (Index.to_int i)
|> Nonterminal.first
|> List.map (fun t -> Index.of_int g.terminal_n (Terminal.to_int t))
|> IndexSet.of_list
let nonterminal_table g =
if Hashtbl.length g.nonterminal_table = 0 then
Index.iter (cardinal g)
(fun t -> Hashtbl.add g.nonterminal_table (to_string g t) t);
g.nonterminal_table
let find g ?(approx=3) name =
let table = nonterminal_table g in
match Hashtbl.find_opt table name, approx with
| Some t, _ -> Result.Ok t
| None, 0 -> Result.Error (`Dym [])
| None, dist ->
match find_mangled g name with
| Some i ->
Result.Error (`Mangled i)
| None ->
let candidates =
Damerau_levenshtein.filter_approx ~dist name (Hashtbl.to_seq table)
in
Result.Error (`Dym candidates)
end
module Symbol = struct
type 'g n = 'g symbol
let cardinal g = Sum.cardinal g.terminal_n g.nonterminal_n
let of_int g i = Index.of_int (cardinal g) i
type 'g desc =
| T of 'g terminal index
| N of 'g nonterminal index
let prj g i = Sum.prj g.terminal_n i
let desc g i =
match prj g i with
| L t -> T t
| R n -> N n
let is_terminal g t = match prj g t with
| L _ -> true
| R _ -> false
let is_nonterminal g t = match prj g t with
| L _ -> false
| R _ -> true
let to_string g ?mangled t =
let open (val g.raw) in
match prj g t with
| L t -> symbol_name ?mangled (T (Terminal.of_int (Index.to_int t)))
| R n -> symbol_name ?mangled (N (Nonterminal.of_int (Index.to_int n)))
let semantic_value g t = match prj g t with
| L t -> Some (Option.value (Terminal.semantic_value g t) ~default:"unit")
| R n -> Nonterminal.semantic_value g n
let all g = g.symbol_all
let inj_t _ t = Sum.inj_l t
let inj_n g n = Sum.inj_r g.terminal_n n
let find g ?(approx=3) name =
let ttable = Terminal.terminal_table g in
match Hashtbl.find_opt ttable name with
| Some t -> Result.Ok (inj_t g t)
| None ->
let ntable = Nonterminal.nonterminal_table g in
match Hashtbl.find_opt ntable name, approx with
| Some n, _ -> Result.Ok (inj_n g n)
| None, 0 -> Result.Error (`Dym [])
| None, dist ->
match Nonterminal.find_mangled g name with
| Some i ->
Result.Error (`Mangled i)
| None ->
let candidates =
Damerau_levenshtein.filter_approx ~dist name
(Seq.append
(Seq.map (fun (s,t) -> (s, inj_t g t)) (Hashtbl.to_seq ttable))
(Seq.map (fun (s,n) -> (s, inj_n g n)) (Hashtbl.to_seq ntable)))
in
Result.Error (`Dym candidates)
end
module Production = struct
type 'g n = 'g production
let cardinal g = Vector.length g.production_lhs
let of_int g i = Index.of_int (cardinal g) i
let lhs g i = g.production_lhs.:(i)
let rhs g i = g.production_rhs.:(i)
let length g i = Array.length (rhs g i)
let kind g i =
let open (val g.raw) in
Production.kind (Production.of_int (Index.to_int i))
let all g = g.production_all
end
module Item = struct
type 'g n = 'g item
let cardinal g = Vector.length g.item_productions
let of_int g i = Index.of_int (cardinal g) i
let make g prod pos =
if pos < 0 || pos > Production.length g prod then
invalid_arg "Info.Item.make: pos out of bounds";
Index.of_int (cardinal g) (g.item_offsets.:(prod) + pos)
let last g prod =
make g prod (Production.length g prod)
let production g i = g.item_productions.:(i)
let position g i =
((i : _ index :> int) - g.item_offsets.:(production g i))
let desc g i =
let prod = production g i in
(prod, (i : _ index :> int) - g.item_offsets.:(prod))
let prev g (i : 'g n index) =
match Index.pred i with
| Some j when not (Index.equal (production g i) (production g j)) -> None
| result -> result
let is_reducible g i =
let prod = production g i in
((i : _ index :> int) - g.item_offsets.:(prod)) =
Production.length g prod
let to_string g i =
let prod, pos = desc g i in
let b = Buffer.create 63 in
Buffer.add_string b (Nonterminal.to_string g (Production.lhs g prod));
Buffer.add_char b ':';
let rhs = Production.rhs g prod in
let add_sym sym =
Buffer.add_char b ' ';
Buffer.add_string b (Symbol.to_string g sym);
in
for i = 0 to pos - 1
do add_sym rhs.(i) done;
Buffer.add_string b " .";
for i = pos to Array.length rhs - 1
do add_sym rhs.(i) done;
Buffer.contents b
end
module Lr0 = struct
type 'g n = 'g lr0
let cardinal g = Vector.length g.lr0_items
let of_int g i = Index.of_int (cardinal g) i
let incoming g i = g.lr0_incoming.:(i)
let items g i = g.lr0_items.:(i)
let is_entrypoint g i = g.lr0_is_entrypoint.:(i)
end
module Lr1 = struct
type 'g n = 'g lr1
let cardinal g = Vector.length g.lr1_reduce_on
let of_int g i = Index.of_int (cardinal g) i
let all g = g.lr1_all
let accepting g = g.lr1_accepting
let wait g = g.lr1_wait
let to_lr0 g i = g.lr1_lr0.:(i)
let incoming g i = Lr0.incoming g (to_lr0 g i)
let items g i = Lr0.items g (to_lr0 g i)
let is_entrypoint g i = Lr0.is_entrypoint g (to_lr0 g i)
let entrypoint_table g = g.lr1_entrypoint_table
let entrypoints g = g.lr1_entrypoints
let symbol_to_string g lr1 =
match incoming g lr1 with
| Some sym -> Symbol.to_string g sym
| None ->
let entrypoint = Option.get (is_entrypoint g lr1) in
(Symbol.to_string g (Production.rhs g entrypoint).(0) ^ ":")
let to_string g lr1 =
string_of_index lr1 ^ ":" ^ symbol_to_string g lr1
let list_to_string g lr1s =
string_concat_map ~wrap:("[","]") "; " (to_string g) lr1s
let set_to_string g lr1s =
string_concat_map ~wrap:("{","}") ", " (to_string g) (IndexSet.elements lr1s)
(** [shift_on t] is the set of lookaheads that state [t] can shift *)
let shift_on g i = g.lr1_shift_on.:(i)
(** [reduce_on t] is the set of lookaheads that trigger a reduction in state
[t] *)
let reduce_on g i = g.lr1_reduce_on.:(i)
(** [reject t] is set of lookaheads that cause the automaton to fail when in
state [t] *)
let reject g i = g.lr1_reject.:(i)
(** [predecessors t] is the set of LR(1) states that have transition going
to [t]. *)
let predecessors g i = g.lr1_predecessors.:(i)
(** Wrapper around [IndexSet.inter] speeding-up intersection with [all] *)
let intersect g a b =
if a == g.lr1_all then b
else if b == g.lr1_all then a
else IndexSet.inter a b
let default_reduction g i =
let open (val g.raw) in
match Lr1.default_reduction (Lr1.of_int (i : _ index :> int)) with
| None -> None
| Some p -> Some (Index.of_int (Vector.length g.production_rhs) (Production.to_int p))
end
module Reduction = struct
type 'g n = 'g reduction
let cardinal g = Vector.length g.reduction_production
let of_int g i = Index.of_int (cardinal g) i
let state g i = g.reduction_state.:(i)
let production g i = g.reduction_production.:(i)
let lookaheads g i = g.reduction_lookaheads.:(i)
let from_lr1 g lr1 =
g.reduction_from_lr1.:(lr1)
end
module Transition = struct
let goto g = Vector.length g.transition_goto_sym
let any g = Vector.length g.transition_source
let shift g = Vector.length g.transition_shift_sym
let of_goto _g i = Sum.inj_l i
let of_shift g i = Sum.inj_r (goto g) i
let split g i =
Sum.prj (goto g) i
let find_goto g lr1 nt =
match IndexMap.find_opt nt g.transition_goto_table.:(lr1) with
| Some gt -> gt
| None ->
Printf.ksprintf invalid_arg "find_goto(%s, %s)"
(Lr1.to_string g lr1) (Nonterminal.to_string g lr1)
let find_goto_target g lr1 nt =
g.transition_target.:(of_goto g (find_goto g lr1 nt))
let source g i = g.transition_source.:(i)
let target g i = g.transition_target.:(i)
let symbol g i =
match split g i with
| L i -> Sum.inj_r g.terminal_n g.transition_goto_sym.:(i)
| R i -> Sum.inj_l g.transition_shift_sym.:(i)
let goto_symbol g i = g.transition_goto_sym.:(i)
let shift_symbol g i = g.transition_shift_sym.:(i)
let successors g i = g.transition_successors.:(i)
let predecessors g i = g.transition_predecessors.:(i)
let accepting g = g.transition_accepting
let to_string g tr =
Printf.sprintf "%s -> %s"
(Lr1.to_string g (source g tr))
(Lr1.to_string g (target g tr))
let find g src tgt =
let inter = IndexSet.inter (successors g src) (predecessors g tgt) in
assert (IndexSet.is_empty inter || IndexSet.is_singleton inter);
IndexSet.minimum inter
end