Source file redgraph.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
(** This module is responsible for computing viable reductions in a LR(1) parser
generator. It generates a graph of states, where each state represents a
configuration of the parser, including the top of the stack, the rest of the
stack, and the current lookahead set. The module also computes transitions
between these states based on possible reductions and goto actions.
*)
open Fix.Indexing
open Utils
open Misc
open Info
let group_reductions g = function
| [] -> []
| items ->
let rec group depth acc = function
| [] -> [acc]
| (it, la) :: rest when depth = Item.position g it ->
let lhs = Production.lhs g (Item.production g it) in
group depth (IndexMap.update lhs (union_update la) acc) rest
| otherwise ->
acc :: group (depth + 1) IndexMap.empty otherwise
in
let compare_items (it1, _) (it2, _) =
Int.compare (Item.position g it1) (Item.position g it2)
in
group 0 IndexMap.empty (List.sort compare_items items)
type 'g stack_tree = {
subs: ('g lr1 index list * 'g terminal indexset * 'g stack_tree) list;
} [@@ocaml.unboxed]
type 'g reduction_closure = {
accepting: 'g terminal indexset;
failing: 'g terminal indexset;
reductions: ('g nonterminal, 'g terminal indexset) indexmap list;
stacks: 'g stack_tree;
}
type ('g, 'n) reduction_closures = ('n, 'g reduction_closure) vector
let add_subset g r set la =
r := IndexSet.union (Terminal.intersect g set la) !r
let close_lr1_reductions (type g) (g : g grammar) : (g lr1, g reduction_closure) vector =
Vector.init (Lr1.cardinal g) @@ fun lr1 ->
let accepting = ref IndexSet.empty in
let failing = ref IndexSet.empty in
let items = ref [] in
let rec pop lookahead acc (item : g item index) = function
| [] ->
push items (item, lookahead);
acc
| hd :: tl as stack ->
match Item.prev g item with
| Some item' -> pop lookahead acc item' tl
| None ->
let lhs = Production.lhs g (Item.production g item) in
let stack = Transition.find_goto_target g hd lhs :: stack in
let subs = reduce lookahead [] stack in
(stack, lookahead, {subs}) :: acc
and reduce lookahead acc stack =
let lr1 = List.hd stack in
add_subset g failing (Lr1.reject g lr1) lookahead;
add_subset g accepting (Lr1.shift_on g lr1) lookahead;
IndexSet.fold begin fun red acc ->
match Terminal.intersect g (Reduction.lookaheads g red) lookahead with
| la when IndexSet.is_empty la -> acc
| la ->
pop la acc (Item.last g (Reduction.production g red)) stack
end (Reduction.from_lr1 g lr1) acc
in
let subs = reduce (Terminal.all g) [] [lr1] in
let reductions = group_reductions g !items in
let failing = !failing in
let accepting = !accepting in
{accepting; failing; reductions; stacks = {subs}}
let dump_closure ?(failing=false) g print_label vector =
Vector.iteri begin fun st def ->
let has_failing = failing && IndexSet.is_not_empty def.failing in
let has_reductions = not (list_is_empty def.reductions) in
let has_stacks = not (list_is_empty def.stacks.subs) in
if has_failing || has_reductions || has_stacks then
Printf.fprintf stdout "%s:\n" (print_label st);
if has_failing then
Printf.fprintf stdout "- failing: %s\n"
(string_of_indexset ~index:(Terminal.to_string g) def.failing);
if has_reductions then (
Printf.fprintf stdout "- reductions:\n";
List.iter (fun map ->
let first = ref true in
IndexMap.iter (fun nt la ->
if !first then
(Printf.fprintf stdout " - "; first := false)
else
Printf.fprintf stdout " ";
Printf.fprintf stdout "%s @ %s\n"
(Nonterminal.to_string g nt)
(Terminal.lookaheads_to_string g la);
) map
) def.reductions
);
let rec print_stacks indent = function
| {subs = []} -> ()
| {subs} ->
let indent = " " ^ indent in
List.iter begin fun (stack, la, sub') ->
Printf.fprintf stdout "%s- %s @ %s\n"
indent
(Lr1.list_to_string g stack)
(Terminal.lookaheads_to_string g la);
print_stacks indent sub'
end subs
in
if has_stacks then
Printf.fprintf stdout "- stacks:\n";
print_stacks "" def.stacks;
end vector
module Target = Unsafe_cardinal()
type 'g target = 'g Target.t
type 'g targets = ('g target, 'g terminal indexset) indexmap
type 'g target_trie = {
mutable sub: ('g lr1, 'g target_trie) indexmap;
mutable immediates: 'g lr1 indexset;
mutable targets: ('g lr1, 'g target index) indexmap;
}
let index_targets (type g) (g : g grammar) rc
: g target_trie * (g goto_transition, g targets) vector
=
let goto_sources = Vector.make (Lr1.cardinal g) IndexSet.empty in
Index.rev_iter (Transition.goto g) begin fun gt ->
let tr = (Transition.of_goto g gt) in
goto_sources.@(Transition.target g tr) <- IndexSet.add gt
end;
let module Gen = Gensym() in
let open Target.Eq(struct
type t = g
include Gen
end) in
let Refl = eq in
let by_goto = Vector.make (Transition.goto g) IndexMap.empty in
let fresh_node () = {
sub = IndexMap.empty;
immediates = IndexSet.empty;
targets = IndexMap.empty;
} in
let get_child (node, lr1) =
match IndexMap.find_opt lr1 node.sub with
| Some node' -> node'
| None ->
let node' = fresh_node () in
node.sub <- IndexMap.add lr1 node' node.sub;
node'
in
let root = fresh_node () in
root.immediates <- Lr1.all g;
let rec follow_path = function
| [] -> assert false
| [lr1] -> (root, lr1)
| lr1 :: path -> (get_child (follow_path path), lr1)
in
Index.rev_iter (Lr1.cardinal g) begin fun tgt ->
let rec visit_stacks acc {subs} =
List.fold_left begin fun acc (stack, la, sub') ->
let acc = (follow_path stack, la) :: acc in
visit_stacks acc sub'
end acc subs
in
let roots = visit_stacks [] rc.:(tgt).stacks in
List.iter
(fun ((node, lr1), _) ->
node.immediates <- IndexSet.add lr1 node.immediates)
roots;
let sources = goto_sources.:(tgt) in
if IndexSet.is_not_empty sources then
let roots =
(get_child (root, tgt), Terminal.all g) ::
List.map (fun (root, la) -> (get_child root, la)) roots
in
List.iter begin fun (root, la) ->
IndexSet.iter begin fun gt ->
let src = Transition.source g (Transition.of_goto g gt) in
let index = match IndexMap.find_opt src root.targets with
| Some index -> index
| None ->
let index = Gen.fresh () in
root.targets <- IndexMap.add src index root.targets;
index
in
by_goto.@(gt) <- IndexMap.add index la
end sources;
end roots
end;
stopwatch 2 "indexed %d targets" (cardinal Gen.n);
(root, by_goto)
module Step = Unsafe_cardinal()
type 'g step = 'g Step.t
let get_stream ?(initial=0) stream =
let s = ref stream in
let d = ref initial in
fun i ->
assert (i >= !d);
while i > !d do
s := Lazy.force (!s).lnext;
incr d;
done;
(!s).lvalue
type 'g transition = {
reached: 'g target indexset;
reachable: 'g target indexset;
step: 'g step index;
}
type 'g graph = ('g step, ('g lr1, 'g transition list) indexmap) vector
let make (type g) (g : g grammar) rc targets : g graph =
let open IndexBuffer in
let module Cells = Gensym() in
let module Links = Gen.Make() in
let cells : (Cells.n, g lr1 indexset) Dyn.t = Dyn.make IndexSet.empty in
let open struct type label = g lr1 index * g target indexset * int * Cells.n index * Cells.n index * g lr1 indexset end in
let links : (Links.n, label) Gen.t = Links.get_generator () in
let table = Vector.make (Nonterminal.cardinal g) IndexSet.Map.empty in
let get_cell nt la =
let map0 = table.:(nt) in
match IndexSet.Map.find_opt la map0 with
| Some index -> index
| None ->
let index = Cells.fresh () in
table.:(nt) <- IndexSet.Map.add la index map0;
index
in
let initial = Cells.fresh () in
let sink = Cells.fresh () in
let rec explore_cell cell nt la src =
let gt = Transition.find_goto g src nt in
let reached =
IndexMap.deflate targets.:(gt)
(fun _ la' -> not (IndexSet.disjoint la la'));
in
let predecessors = get_stream (Lr1.predecessors g src) in
let tgt = Transition.target g (Transition.of_goto g gt) in
explore_transitions cell src reached la predecessors rc.:(tgt).reductions
and explore_transitions cell0 src reached la0 predecessors reductions =
let result = ref [] in
List.iteri begin fun depth goto ->
IndexMap.iter begin fun nt la ->
let la = IndexSet.inter la0 la in
if IndexSet.is_not_empty la then (
let cell = get_cell nt la in
let states = predecessors depth in
let done_ = Dyn.get cells cell in
let todo = IndexSet.diff states done_ in
push result (src, reached, depth, cell0, cell, states);
if IndexSet.is_not_empty todo then (
Dyn.set cells cell (IndexSet.union todo done_);
IndexSet.rev_iter (explore_cell cell nt la) todo;
)
);
end goto
end reductions;
match !result with
| [] -> ignore (Gen.add links (src, reached, 0, cell0, sink, IndexSet.empty));
| result -> List.iter (fun tr -> ignore (Gen.add links tr)) result
in
Index.iter (Lr1.cardinal g) begin fun lr1 ->
let predecessors = get_stream ~initial:(-1) (Lr1.predecessors g lr1) in
explore_transitions initial lr1 IndexSet.empty (Terminal.regular g) predecessors
rc.:(lr1).reductions
end;
stopwatch 2 "raw redgraph: %d cells, %d links" (cardinal Cells.n) (cardinal Links.n);
let module Min = Valmari.Minimize(struct
type t = label
let compare
(lr1, targets1, depth1, _src1, _dst1, states1)
(lr2, targets2, depth2, _src2, _dst2, states2)
=
let c = Index.compare lr1 lr2 in
if c <> 0 then c else
let c = Int.compare depth1 depth2 in
if c <> 0 then c else
let c = IndexSet.compare targets1 targets2 in
if c <> 0 then c else
let c = IndexSet.compare states1 states2 in
c
end)(struct
type states = Cells.n
let states = Cells.n
type transitions = Links.n
let transitions = Links.n
let source tr = let (_,_,_,x,_,_) = Gen.get links tr in x
let target tr = let (_,_,_,_,x,_) = Gen.get links tr in x
let label tr = Gen.get links tr
let initials f = f initial
let finals f = Index.iter Cells.n f
let refinements f =
f (fun ~add -> add initial);
f (fun ~add -> add sink)
end)
in
let initial = Option.get (Min.transport_state initial) in
let sink = Option.get (Min.transport_state sink) in
stopwatch 2 "minimized redgraph: %d cells, %d links"
(cardinal Min.states) (cardinal Min.transitions);
let cells_outgoing = Vector.make Min.states IndexMap.empty in
let cells_depth = Vector.make Min.states 0 in
Index.rev_iter Min.transitions begin fun tr ->
let source = Min.source tr in
let target = Min.target tr in
let lr, _, depth, _, _, _ = Min.label tr in
cells_outgoing.@(source) <- IndexMap.update lr (add_update tr);
cells_depth.@(target) <- Int.max depth
end;
stopwatch 2 "redgraph: indexed transitions";
let succ f tr =
let (_, _, _, _, _, states) = Min.label tr in
let outgoing = cells_outgoing.:(Min.target tr) in
IndexSet.rev_iter (fun src -> IndexSet.iter f (IndexMap.find src outgoing))
states
in
let reachable = Vector.init Min.transitions (fun tr ->
let acc = ref IndexSet.empty in
succ (fun tr' ->
let (_, targets, _, _, _, _) = Min.label tr' in
acc := IndexSet.union targets !acc
) tr;
!acc
) in
Tarjan.close_relation succ reachable;
stopwatch 2 "redgraph: reachability closure";
let module Steps = Step.Const(struct
type t = g
let cardinal =
Vector.fold_left (+) (Vector.length_as_int cells_depth - 1) cells_depth
let () = stopwatch 2 "redgraph: %d steps" cardinal
end) in
let enum = Index.enumerate Steps.n in
let step_zero = enum () in
let cells_steps =
Vector.mapi (fun cell depth ->
if cell = initial || cell = sink then
step_zero
else (
for _ = 0 to depth - 1 do
ignore (enum ())
done;
enum ()
)
) cells_depth
in
let steps = Vector.make Steps.n IndexMap.empty in
Vector.rev_iteri begin fun cell step ->
steps.:(step) <- IndexMap.map begin fun trs ->
List.map (fun tr ->
let (_, reached, depth, _, _, _) = Min.label tr in
let reachable = reachable.:(tr) in
let target = cells_steps.:(Min.target tr) in
let step = Index.of_int Steps.n (Index.to_int target - depth) in
{reached; reachable; step}
) (IndexSet.elements trs)
end cells_outgoing.:(cell)
end cells_steps;
steps
type 'g action =
| Advance of 'g step index
| Switch of ('g lr1, 'g transition list) indexmap
let initial (type g) (gr : g graph) (lr1 : g lr1 index) =
match IndexMap.find_opt lr1 (Vector.as_array gr).(0) with
| None -> []
| Some l -> l
let follow gr step =
match (step : _ index :> int) with
| 0 -> Switch IndexMap.empty
| step' ->
let map = gr.:(step) in
if IndexMap.is_empty map then
Advance (Index.of_int (Vector.length gr) (step' + 1))
else
Switch map