Source file regexp.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
(** This module implements the regular expressions used by LRGrep.
It provides functions for creating, comparing, and deriving regular
expressions and continuations, which appear during the derivation process.
It is parameterized by the `Info` and `Redgraph` modules, which are used to
provide information about the LR automaton and its (viable) reductions,
respectively. *)
open Fix.Indexing
open Utils
open Misc
open Info
(** The Capture module defines types and functions for representing variables
captured in regular expressions.
It uses an index type to uniquely identify a capture in an expression. *)
module Capture : sig
type n
type t = n index
type set = n indexset
type 'a map = (n, 'a) indexmap
val gensym : unit -> unit -> n index
end = struct
include Positive
type t = n index
type set = n indexset
type 'a map = (n, 'a) indexmap
let gensym () =
let r = ref (-1) in
fun () -> incr r; Index.of_int n !r
end
(** The RE module type defines the signature for regular expressions, including
types for reductions, unique IDs to identify sub-terms, and the regular
expression terms themselves.
It also includes functions for creating, comparing, and converting regular
expressions to a Cmon document. *)
module Reductions = struct
type 'g t = {
pattern: 'g Redgraph.target indexset;
capture: Capture.set;
policy: Syntax.quantifier_kind;
}
let compare r1 r2 =
if r1 == r2 then 0 else
let c = IndexSet.compare r1.pattern r2.pattern in
if c <> 0 then c else
let c = IndexSet.compare r1.capture r2.capture in
c
let cmon {capture=_; pattern; policy} =
Cmon.record [
"pattern_domain", cmon_set_cardinal pattern;
"policy", Syntax.cmon_quantifier_kind policy;
]
end
module Expr = struct
(** Integers that serves has unique id to identify sub-terms.
Thanks to properties of Antimirov's derivatives, no new term is
introduced during derivation. All terms are produced during initial
parsing. *)
type uid = int
let uid =
let k = ref 0 in
fun () -> incr k; !k
type 'g t = {
uid : uid;
desc : 'g desc;
position : Syntax.position;
}
(** The different constructors of regular expressions*)
and 'g desc =
| Set of 'g lr1 indexset * Capture.set
(** Recognise a set of states, and optionally bind the matching state to
a variable. *)
| Alt of 'g t list
(** [Alt ts] is the disjunction of sub-terms [ts] (length >= 2).
[Alt []] represents the empty language. *)
| Seq of 'g t list
(** [Seq ts] is the concatenation of sub-terms [ts] (length >= 2).
[Seq []] represents the {ε}. *)
| Star of 'g t * Syntax.quantifier_kind
(** [Star t] is represents the Kleene star of [t] *)
| Filter of 'g lr1 indexset
| Reduce of Capture.set * 'g Reductions.t
(** The reduction operator *)
| Usage of Usage.set
(** A regular expression term with its unique ID, its description and its
position. *)
let empty = {uid = 0; desc = Alt[]; position = Lexing.dummy_pos}
(** Introduce a new term, allocating a unique ID *)
let make position desc =
{uid = uid (); desc; position}
(** Compare two terms *)
let compare t1 t2 =
Int.compare t1.uid t2.uid
let cmon ?(lr1=cmon_index) t =
let rec aux t =
match t.desc with
| Set (lr1s, _var) ->
Cmon.construct "Set" [cmon_indexset ~index:lr1 lr1s]
| Alt ts -> Cmon.constructor "Alt" (Cmon.list_map aux ts)
| Seq ts -> Cmon.constructor "Seq" (Cmon.list_map aux ts)
| Star (t, qk) -> Cmon.construct "Star" [aux t; Syntax.cmon_quantifier_kind qk]
| Filter lr1s ->
Cmon.constructor "Filter" (cmon_indexset ~index:lr1 lr1s)
| Reduce (_var, r) ->
Cmon.construct "Reduce" [ Reductions.cmon r]
| Usage _ ->
Cmon.constant "Usage"
in
aux t
end
module Label = struct
type 'g t = {
filter: 'g lr1 indexset;
captures: Capture.set;
usage: Usage.set;
}
let compare l1 l2 =
if l1 == l2 then 0 else
let c = IndexSet.compare l1.filter l2.filter in
if c <> 0 then c else
IndexSet.compare l1.captures l2.captures
let filter label filter =
let filter = IndexSet.inter label.filter filter in
if IndexSet.is_empty filter then
None
else
Some {label with filter}
let union l1 l2 = {
filter = IndexSet.union l1.filter l2.filter;
captures = IndexSet.union l1.captures l2.captures;
usage = Usage.join l1.usage l2.usage;
}
let capture label vars usage =
if IndexSet.is_empty vars && Usage.is_empty usage then
label
else
{label with captures = IndexSet.union label.captures vars;
usage = Usage.join label.usage usage}
end
module K = struct
type 'g t =
| Accept
| Done
| More of 'g Expr.t * 'g t
| Reducing of {
reduction: 'g Reductions.t;
steps: 'g Redgraph.step indexset;
next: 'g t;
}
let cmon ?lr1 ?step k =
let rec aux = function
| Accept -> Cmon.constant "Accept"
| Done -> Cmon.constant "Done"
| More (e, t) ->
Cmon.construct "More" [Expr.cmon ?lr1 e; aux t]
| Reducing {reduction=_; steps; next} ->
Cmon.crecord "Reducing" [
"reduction", Cmon.constant "...";
"steps", cmon_indexset ?index:step steps;
"next", aux next;
]
in
aux k
let rec compare t1 t2 =
if t1 == t2 then 0 else
match t1, t2 with
| Accept, Accept -> 0
| Done, Done -> 0
| More (e1, t1'), More (e2, t2') ->
let c = Expr.compare e1 e2 in
if c <> 0 then c else
compare t1' t2'
| Reducing r1, Reducing r2 ->
let c = Reductions.compare r1.reduction r2.reduction in
if c <> 0 then c else
let c = IndexSet.compare r1.steps r2.steps in
if c <> 0 then c else
compare r1.next r2.next
| Accept, (More _ | Reducing _ | Done) -> -1
| Done, (More _ | Reducing _) -> -1
| (More _ | Reducing _ | Done), Accept -> +1
| (More _ | Reducing _), Done -> +1
| More _, Reducing _ -> -1
| Reducing _, More _ -> +1
let intersecting s1 s2 =
not (IndexSet.disjoint s1 s2)
let derive (type g) (_g : g grammar) (rg: g Redgraph.graph) filter k =
let continue r label next = match !r with
| (label', next') :: r' when next' == next ->
r := (Label.union label' label, next) :: r'
| r' ->
r := (label, next) :: r'
in
let ks = ref [] in
let rec process_reduction_step matching next_steps filter (reduction : _ Reductions.t) step =
match Redgraph.follow rg step with
| Advance step' ->
next_steps := IndexMap.update step' (union_update filter) !next_steps
| Switch map ->
let matching' = ref IndexSet.empty in
IndexMap.rev_iter begin fun (lr1, trs) ->
if IndexSet.mem lr1 filter then (
let has_match = ref false in
List.iter begin fun (tr : _ Redgraph.transition) ->
if not !has_match then
has_match := intersecting tr.reached reduction.pattern;
if intersecting tr.reachable reduction.pattern then begin
process_reduction_step matching next_steps (IndexSet.singleton lr1) reduction tr.step
end
end trs;
if !has_match then
matching' := IndexSet.add lr1 !matching';
)
end map;
matching := IndexSet.union !matching' !matching
in
let rec process_k label = function
| Accept ->
()
| Done ->
continue ks label Accept
| More (re, next) as self ->
process_re label self next re.desc
| Reducing {reduction; steps; next} ->
let filter0 = label.filter in
let matching = ref IndexSet.empty in
let next_steps = ref IndexMap.empty in
let f = process_reduction_step matching next_steps label.filter reduction in
IndexSet.iter f steps;
let push_matching () =
if IndexSet.is_not_empty !matching then (
let label = {label with filter = !matching} in
process_k label next
)
in
let push_steps () =
let label = Label.capture label reduction.capture Usage.empty in
let next_steps =
!next_steps
|> IndexMap.bindings
|> List.map (fun (a, b) -> (b, a))
|> IndexRefine.annotated_partition
in
List.iter (fun (filter, steps) ->
assert (IndexSet.subset filter filter0);
let steps = IndexSet.of_list steps in
continue ks {label with filter}
(Reducing {reduction; steps; next});
) next_steps;
in
begin match reduction.policy with
| Shortest ->
push_matching ();
push_steps ()
| Longest ->
push_steps ();
push_matching ()
end
and process_re label self next = function
| Set (s, var) ->
begin match Label.filter label s with
| None -> ()
| Some label ->
continue ks (Label.capture label var Usage.empty) next
end
| Alt es ->
List.iter (fun e -> process_k label (More (e, next))) es
| Star (r, Shortest) ->
process_k label next;
process_k label (More (r, self))
| Star (r, Longest) ->
process_k label (More (r, self));
process_k label next
| Seq es ->
process_k label (List.fold_right (fun e k -> More (e, k)) es next)
| Filter filter ->
begin match Label.filter label filter with
| None -> ()
| Some label' -> process_k label' next
end
| Reduce (cap, reduction) ->
let label =
Label.capture label
(IndexSet.union cap reduction.capture)
Usage.empty
in
let next_steps = ref [] in
IndexSet.iter begin fun lr1 ->
let steps =
List.fold_right begin fun (tr : _ Redgraph.transition) steps ->
if intersecting tr.reachable reduction.pattern
then IndexSet.add tr.step steps
else steps
end (Redgraph.initial rg lr1) IndexSet.empty
in
if IndexSet.is_not_empty steps then
push next_steps (steps, lr1);
end label.filter;
let next_steps = IndexRefine.annotated_partition !next_steps in
List.iter (fun (steps, filter) ->
let filter = IndexSet.of_list filter in
continue ks {label with filter} (Reducing {reduction; steps; next})
) next_steps;
| Usage set ->
let label = Label.capture label IndexSet.empty set in
process_k label next
in
let label = {Label. filter; captures = IndexSet.empty; usage = Usage.empty} in
process_k label k;
List.rev !ks
end