package lrgrep

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file Indexing.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
(******************************************************************************)
(*                                                                            *)
(*                                    Fix                                     *)
(*                                                                            *)
(*                       François Pottier, Inria Paris                        *)
(*                                                                            *)
(*  Copyright Inria. All rights reserved. This file is distributed under the  *)
(*  terms of the GNU Library General Public License version 2, with a         *)
(*  special exception on linking, as described in the file LICENSE.           *)
(*                                                                            *)
(******************************************************************************)

(* A suspension is used to represent a cardinal-that-may-still-be-unknown. *)

type 'n cardinal =
  Cardinal : int Lazy.t -> unit cardinal [@@ocaml.unboxed]

(* The function [cardinal] forces the cardinal to become fixed. *)

let cardinal (type n) (Cardinal c : n cardinal) = Lazy.force_val c

let is_val (type n) (Cardinal l : n cardinal) = Lazy.is_val l

type (_, _) eq = Refl : ('a, 'a) eq

let assert_equal_cardinal (type n m) (n : n cardinal) (m : m cardinal) : (n, m) eq =
  let Cardinal n = n in
  let Cardinal m = m in
  if not (Int.equal (Lazy.force_val n) (Lazy.force_val m)) then
    invalid_arg "Indexing.equal_cardinal: not equal";
  Refl

let check_equal_cardinal (type n m) (n : n cardinal) (m : m cardinal) : (n, m) eq option =
  let Cardinal n = n in
  let Cardinal m = m in
  if Int.equal (Lazy.force_val n) (Lazy.force_val m)
  then Some Refl
  else None

type 'n index =
  int

module type CARDINAL = sig type n val n : n cardinal end

(* [Empty] and [Const] produce sets whose cardinal is known. *)

module Empty = struct
  type n = unit
  let n = Cardinal (lazy 0)
end

module Unit = struct
  type n = unit
  let n = Cardinal (lazy 1)
  let element = 0
end

(**{!Opt} adds one element to a set. *)
module Opt = struct
  type 'n n = unit
  let none : 'n n index = 0
  let some : 'n index -> 'n n index = succ

  let prj = function
    | 0 -> None
    | i -> Some (i - 1)

  let is_none x = x = none

  let cardinal (type n) (Cardinal n : n cardinal) =
    if Lazy.is_val n then
      let n = 1 + Lazy.force_val n in
      Cardinal (lazy n)
    else
      Cardinal (Lazy.map succ n)
end
type 'n opt = 'n Opt.n

module Const (X : sig val cardinal : int end) : CARDINAL = struct
  type n = unit
  let () = assert (X.cardinal >= 0)
  let n = Cardinal (lazy X.cardinal)
end

let const c : (module CARDINAL) =
  assert (c >= 0);
  (module struct type n = unit let n = Cardinal (lazy c) end)

module type UNSAFE_CARDINAL = sig
  type 'a t
  module Const(M : sig type t val cardinal : int end) : CARDINAL with type n = M.t t
  module Eq(M : sig type t include CARDINAL end) : sig val eq : (M.t t, M.n) eq end
end

module Unsafe_cardinal() : UNSAFE_CARDINAL = struct
  type 'a t = unit
  module Const(M : sig type t val cardinal : int end) = struct
    type n = M.t t
    let n : n cardinal = Cardinal (lazy (M.cardinal))
  end
  module Eq(M : sig type t include CARDINAL end) = struct
    let eq : (M.t t, M.n) eq =
      let Cardinal _ = M.n in
      Refl
  end
end

(* [Gensym] produces a set whose cardinal is a priori unknown. A new reference
   stores the current cardinal, which grows when [fresh()] is invoked. [fresh]
   fails if the suspension [n] has been forced. *)

module Gensym () = struct

  type n = unit
  let counter = ref 0
  let n = Cardinal (lazy !counter)

  let fresh () =
    assert (not (is_val n));
    let result = !counter in
    incr counter;
    result

end

type ('l, 'r) either =
  | L of 'l
  | R of 'r

module Sum = struct
  type (_, _) n = unit

  module type S = sig
    type l and r
    type nonrec n = (l, r) n
    include CARDINAL with type n := n
    val inj_l : l index -> n index
    val inj_r : r index -> n index
    val prj : n index -> (l index, r index) either
  end

  module Make (L : CARDINAL)(R : CARDINAL) = struct
    type l = L.n
    type r = R.n
    type nonrec n = (l, r) n

    (* The cardinal [l] of the left-hand set becomes fixed now (if it
       wasn't already). We need it to be fixed for our injections and
       projections to make sense. *)
    let l : int = cardinal L.n

    (* The right-hand set can remain open-ended. *)
    let r : r cardinal = R.n

    let n : n cardinal =
      (* We optimize the case where [r] is fixed already, but the code
         in the [else] branch would work always. *)
      if is_val r then
        let n = l + cardinal r in
        Cardinal (lazy n)
      else
        Cardinal (lazy (l + cardinal r))

    (* Injections. The two sets are numbered side by side. *)
    let inj_l x = x
    let inj_r y = l + y

    (* Projection. *)
    let prj x = if x < l then L x else R (x - l)
  end

  let cardinal (type l r)
        (l : l cardinal)
        (r : r cardinal)
      : (l, r) n cardinal =
    let c = cardinal l + cardinal r in
    Cardinal (lazy c)

  let inj_l x = x

  let inj_r (type l r) (Cardinal l : l cardinal) (x : r index) =
    Lazy.force_val l + x

  let prj (type l r) (Cardinal l : l cardinal) (x : (l, r) n index) : (l index, r index) either =
    let l = Lazy.force_val l in
    if x < l then L x else R (x - l)

  let make (type l r) (l : l cardinal) (r : r cardinal) =
    let module L = struct type n = l let n = l end in
    let module R = struct type n = r let n = r end in
    (module Make(L)(R) : S with type l = l and type r = r)
end

module Prod = struct
  type (_, _) n = unit

  module type S = sig
    type l and r
    type nonrec n = (l, r) n
    include CARDINAL with type n := n
    val inj : l index -> r index -> n index
    val prj : n index -> l index * r index
  end

  module Make (L : CARDINAL)(R : CARDINAL) = struct
    type n = unit

    type l = L.n
    type r = R.n

    (* The cardinal [l] of the left-hand set becomes fixed now (if it
       wasn't already). We need it to be fixed for our injections and
       projections to make sense. *)
    let l : int = cardinal L.n
    (* The right-hand set can remain open-ended. *)
    let r : r cardinal = R.n

    let n : n cardinal =
      (* We optimize the case where [r] is fixed already, but the code
         in the [else] branch would work always. *)
      if is_val r then
        let n = l * cardinal r in
        Cardinal (lazy n)
      else
        Cardinal (lazy (l * cardinal r))

    (* Injections. The two sets are numbered side by side. *)
    let inj x y = y * l + x

    (* Projection. *)
    let prj x = (x mod l, x / l)
  end

  let cardinal (type l r)
        (Cardinal l : l cardinal)
        (Cardinal r : r cardinal)
      : (l, r) n cardinal =
    let l = Lazy.force_val l in
    if Lazy.is_val r then
      let c = l * Lazy.force_val r in
      Cardinal (lazy c)
    else
      Cardinal (lazy (l * Lazy.force_val r))

  let inj (type l) (Cardinal l : l cardinal) lx rx =
    lx + rx * (Lazy.force_val l)

  let prj (type l) (Cardinal l : l cardinal) x =
    let l = Lazy.force_val l in
    (x mod l, x / l)

  let make (type l r) (l : l cardinal) (r : r cardinal) =
    let module L = struct type n = l let n = l end in
    let module R = struct type n = r let n = r end in
    (module Make(L)(R) : S with type l = l and type r = r)
end

module Index = struct

  type 'n t = 'n index

  let of_int (n : 'n cardinal) i : 'n index =
    let n = cardinal n in
    if i < 0 || i >= n then
      invalid_arg "Index.of_int";
    i

  let to_int i = i

  let iter (n : 'n cardinal) (yield : 'n index -> unit) =
    let n = cardinal n in
    for i = 0 to n - 1 do
      yield i
    done

  let rev_iter (n : 'n cardinal) (yield : 'n index -> unit) =
    let n = cardinal n in
    for i = n - 1 downto 0 do
      yield i
    done

  let seq_init n f =
    if n < 0 then
      invalid_arg "seq_init: n < 0"
    else if n = 0 then
      Seq.empty
    else
      let j = n - 1 in
      let rec aux i () =
        if i = j
        then Seq.Cons (f i, Seq.empty)
        else Seq.Cons (f i, aux (i + 1))
      in
      aux 0

  let init_seq (n : 'n cardinal) f =
    seq_init (cardinal n) f

  let rev_init_seq (n : 'n cardinal) f =
    let n = cardinal n in
    let n' = n - 1 in
    seq_init n (fun i -> f (n' - i))

  exception End_of_set

  let enumerate (n : 'n cardinal) : unit -> 'n index =
    let n = cardinal n in
    let next = ref 0 in
    fun () ->
      let i = !next in
      if n <= i then raise End_of_set;
      incr next;
      i

  let rev_enumerate (n : 'n cardinal) : unit -> 'n index =
    let n = cardinal n in
    let next = ref (n - 1) in
    fun () ->
      let i = !next in
      if i < 0 then raise End_of_set;
      decr next;
      i

  let pred = function
    | 0 -> None
    | i -> Some (pred i)

  let equal = Int.equal
  let compare = Int.compare
  let minimum = Int.min
  let maximum = Int.max

  module Unsafe = struct
    module type T = sig type 'a t end
    module type F = functor (X : T) -> sig module type S end

    module Int = struct type 'a t = int end
    module Index = Int
    module Coerce (F: F) (X : F(Int).S) : F(Index).S = X
  end

end

type ('n, 'a) vector = Vector : 'a array -> (unit, 'a) vector [@@ocaml.unboxed]

module Vector = struct

  type ('n, 'a) t = ('n, 'a) vector

  let get (type n) (Vector a : (n, _) t) i = Array.unsafe_get a i
  let set (type n) (Vector a : (n, _) t) i x = Array.unsafe_set a i x

  let set_cons t i x =
    set t i (x :: get t i)

  let length_as_int (type n) (Vector a : (n, _) vector) = Array.length a

  let length (type n) (Vector a : (n, _) t) : n cardinal =
    let n = Array.length a in
    Cardinal (lazy n)

  let empty : (Empty.n, _) t = Vector [||]

  let make (type n) (Cardinal n : n cardinal) x : (n, _) t =
    Vector (Array.make (Lazy.force_val n) x)

  let make' (type n) (Cardinal n : n cardinal) f : (n, _) t=
    match Lazy.force_val n with
    | 0 -> empty
    | n -> Vector (Array.make n (f()))

  let init (type n) (Cardinal n : n cardinal) f : (n, _) t=
    Vector (Array.init (Lazy.force_val n) f)

  let map (type n) f (Vector a : (n, _) t) : (n, _) t =
    Vector (Array.map f a)

  let mapi (type n) f (Vector a : (n, _) t) : (n, _) t =
    Vector (Array.mapi f a)

  let copy (type n) (Vector a : (n, _) t) : (n, _) t =
    Vector (Array.copy a)

  let equal (type n) eq (Vector a : (n, _) t) (Vector b : (n, _) t) =
    let rec loop i j =
      if i = j then
        true
      else if eq (Array.unsafe_get a i) (Array.unsafe_get b i) then
        loop (i + 1) j
      else
        false
    in
    loop 0 (Array.length a)

  let compare (type n) cmp (Vector a : (n, _) t) (Vector b : (n, _) t) =
    let rec loop i j =
      if i = j then
        0
      else
        let c = cmp (Array.unsafe_get a i) (Array.unsafe_get b i) in
        if c <> 0 then
          c
        else
          loop (i + 1) j
    in
    loop 0 (Array.length a)

  let for_all (type n) f (Vector a : (n, _) t) =
    Array.for_all f a

  let exists (type n) f (Vector a : (n, _) t) =
    Array.exists f a

  let iter (type n) f (Vector a : (n, _) t) =
    Array.iter f a

  let iteri (type n) f (Vector a : (n, _) t) =
    Array.iteri f a

  let iter2 (type n) f (Vector a : (n, _) t) (Vector b : (n, _) t) =
    Array.iter2 f a b

  let fold_left (type n) f acc (Vector a : (n, _) t) =
    Array.fold_left f acc a

  let fold_left2 (type n) f acc (Vector a : (n, _) t) (Vector b : (n, _) t) =
    let acc = ref acc in
    for i = 0 to Array.length a - 1 do
      acc := f !acc a.(i) b.(i)
    done;
    !acc

  let fold_lefti (type n) f acc (Vector a : (n, _) t) =
    let acc = ref acc in
    for i = 0 to Array.length a - 1 do
      acc := f !acc i a.(i)
    done;
    !acc

  let fold_lefti2 (type n) f acc (Vector a : (n, _) t) (Vector b : (n, _) t) =
    let acc = ref acc in
    for i = 0 to Array.length a - 1 do
      acc := f !acc i a.(i) b.(i)
    done;
    !acc

  let fold_right (type n) f (Vector a : (n, _) t) acc =
    Array.fold_right f a acc

  let fold_right2 (type n) f (Vector a : (n, _) t) (Vector b : (n, _) t) acc =
    let acc = ref acc in
    for i = Array.length a - 1 downto 0 do
      acc := f a.(i) b.(i) !acc
    done;
    !acc

  let fold_righti (type n) f (Vector a : (n, _) t) acc =
    let acc = ref acc in
    for i = Array.length a - 1 downto 0 do
      acc := f i a.(i) !acc
    done;
    !acc

  let fold_righti2 (type n) f (Vector a : (n, _) t) (Vector b : (n, _) t) acc =
    let acc = ref acc in
    for i = Array.length a - 1 downto 0 do
      acc := f i a.(i) b.(i) !acc
    done;
    !acc

  let rev_iteri (type n) f (Vector a : (n, _) t) =
    for i = Array.length a - 1 downto 0 do
      f i a.(i)
    done

  let as_array (type n) (Vector a : (n, _) t) = a

  let to_list (type n) (Vector a : (n, _) t) = Array.to_list a

  let cast_array (type n) (Cardinal n : n cardinal) arr : (n, _) t =
    if Lazy.force_val n <> Array.length arr then
      invalid_arg "Vector.cast_array: incorrect length";
    Vector arr

  type 'a packed = Packed : (_, 'a) vector -> 'a packed

  let of_array a = Packed (Vector a)

  let of_list l = Packed (Vector (Array.of_list l))

  module type V = sig type n type a val vector : (n, a) t end
  module Of_array (A : sig type a val array : a array end) = struct
    type n = unit
    type a = A.a
    let vector = Vector A.array
  end
end