package lrgrep
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Analyse the stack of a Menhir-generated LR parser using regular expressions
Install
dune-project
Dependency
Authors
Maintainers
Sources
lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/src/kernel/transl.ml.html
Source file transl.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448(* MIT License Copyright (c) 2025 Frédéric Bour Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *) open Utils open Misc open Syntax open Fix.Indexing open Regexp open Info let printf_debug = false (* Index LR(1) states by incoming symbol, goto transitions, items, ... *) module Indices = struct open Info let string_of_symbol = let buffer = Buffer.create 32 in function | Name s -> s | sym -> Buffer.reset buffer; let rec aux = function | Name s -> Buffer.add_string buffer s | Apply (s, args) -> Buffer.add_string buffer s; Buffer.add_char buffer '('; List.iteri (fun i sym -> if i > 0 then Buffer.add_char buffer ','; aux sym ) args; Buffer.add_char buffer ')' in aux sym; Buffer.contents buffer type 'g t = { all_symbols: 'g symbol indexset; by_incoming_symbol: ('g symbol, 'g lr1 indexset) vector; prod_by_lhs: ('g nonterminal, 'g production indexset) vector; by_items: ('g item, 'g lr1 indexset) vector; } let make (type g) (g : g grammar) = (* by_incoming_symbol *) let by_incoming_symbol = Vector.make (Symbol.cardinal g) IndexSet.empty in Index.iter (Lr1.cardinal g) (fun lr1 -> match Lr1.incoming g lr1 with | None -> () | Some sym -> by_incoming_symbol.@(sym) <- IndexSet.add lr1 ); (* prod_by_lhs *) let prod_by_lhs = Vector.make (Nonterminal.cardinal g) IndexSet.empty in Index.rev_iter (Production.cardinal g) (fun prod -> prod_by_lhs.@(Production.lhs g prod) <- IndexSet.add prod); (* Closure of nonterminals with epsilon-rules *) let left_rec_nt_reflexive_closure = let table = Vector.make (Nonterminal.cardinal g) IndexSet.empty in let rec close acc nt = if IndexSet.mem nt acc then acc else let acc' = Vector.get table nt in if IndexSet.is_not_empty acc' then IndexSet.union acc acc' else let acc = IndexSet.add nt acc in IndexSet.fold (fun prod acc -> close_rhs (Production.rhs g prod) 0 acc) prod_by_lhs.:(nt) acc and close_rhs rhs pos acc = if pos >= Array.length rhs then acc else match Symbol.desc g rhs.(pos) with | T _ -> acc | N nt -> let acc = close acc nt in if Nonterminal.nullable g nt then close_rhs rhs (pos + 1) acc else acc in fun nt -> let result = Vector.get table nt in if IndexSet.is_empty result then let result = close IndexSet.empty nt in Vector.set table nt result; result else result in (* by_items *) let by_items = Vector.make (Item.cardinal g) IndexSet.empty in Index.rev_iter (Lr1.cardinal g) (fun lr1 -> let register item = by_items.@(item) <- IndexSet.add lr1 in let closure_items nt = IndexSet.iter (fun prod -> register (Item.make g prod 0)) prod_by_lhs.:(nt) in let kernel_item item = register item; let (prod, pos) = Item.desc g item in let rhs = Production.rhs g prod in if pos < Array.length rhs then match Symbol.desc g rhs.(pos) with | T _ -> () | N nt -> IndexSet.iter closure_items (left_rec_nt_reflexive_closure nt) in IndexSet.iter kernel_item (Lr1.items g lr1) ); {all_symbols = Symbol.all g; by_incoming_symbol; prod_by_lhs; by_items} let find_symbols g indices = function | None -> Result.Ok indices.all_symbols | Some name -> Result.map IndexSet.singleton (Symbol.find g (string_of_symbol name)) let get_symbol g pos sym = let sym = string_of_symbol sym in match Symbol.find g sym with | Result.Error (`Mangled nt) -> warn pos "symbol %s is mangled, please write %s" sym (Nonterminal.to_string g nt); Symbol.inj_n g nt | Result.Error (`Dym dym) -> error pos "Unknown symbol %s%a" sym (print_dym (fun (_,s,_) -> s)) dym | Result.Ok sym -> sym end let string_of_goto g gt = let tr = Transition.of_goto g gt in let src = Transition.source g tr in let tgt = Transition.target g tr in Printf.sprintf "%s -> %s" (Lr1.to_string g src) (Lr1.to_string g tgt) module Globbing = struct type 'g glob_skip = { dot: bool; exact: 'g glob_exact; } and 'g glob_exact = { dots: IntSet.t; syms: 'g Info.symbol indexset array; length: int; skip: 'g glob_skip option; } let parse_component comp = let rec loop dots syms pos = function | [] -> (dots, Array.of_list (List.rev syms)) | `Dot :: rest -> loop (IntSet.add pos dots) syms pos rest | `Find sym :: rest -> loop dots (sym :: syms) (pos + 1) rest in loop IntSet.empty [] 0 comp let rec structure_filter g indices = function | [] -> ([], []) | (Skip, _pos) :: rest -> let last, tail = structure_filter g indices rest in ([], parse_component last :: tail) | (Dot, _pos) :: rest -> let last, tail = structure_filter g indices rest in (`Dot :: last, tail) | (Find sym, pos) :: rest -> let last, tail = structure_filter g indices rest in match Indices.find_symbols g indices sym with | Result.Error (`Mangled n) -> warn pos "symbol %s is mangled, please write %s" (Indices.string_of_symbol (Option.get sym)) (Nonterminal.to_string g n); (`Find (IndexSet.singleton (Symbol.inj_n g n)) :: last, tail) | Result.Error (`Dym dym) -> error pos "Unknown symbol %s%a" (Indices.string_of_symbol (Option.get sym)) (print_dym (fun (_,s,_) -> s)) dym | Result.Ok set -> (`Find set :: last, tail) let normalize_filter = function | [] -> {dots=IntSet.empty; syms=[||]; skip=None; length=0} | [dots, syms] -> {dots; syms; skip=None; length = Array.length syms} | (dots, syms) :: rest -> let rec loop = function | [] -> assert false | [dots, syms] -> {dot = false; exact={dots; syms; skip=None; length=Array.length syms}} | (dots, [||]) :: xs -> if IntSet.is_empty dots then loop xs else {(loop xs) with dot = true} | (dots, syms) :: rest -> {dot = false; exact = loop_skip dots syms rest} and loop_skip dots syms rest = let skip = loop rest in let length = Array.length syms + skip.exact.length in {dots; syms; length; skip = Some skip} in loop_skip dots syms rest let parse g indices filter = let last, tail = structure_filter g indices filter in let comp = parse_component last in normalize_filter (comp :: tail) let sub_match rhs pos exact = (pos + exact.length <= Array.length rhs) && let rec loop i = (i = Array.length exact.syms) || ( IndexSet.mem rhs.(pos + i) exact.syms.(i) && loop (i + 1) ) in loop 0 let rec match_skip rhs pos {dot=_;exact} = match exact.skip with | None -> (* Match suffix *) let pos' = Array.length rhs - Array.length exact.syms in (pos' >= pos) && sub_match rhs pos' exact | Some skip' -> (* Match substring *) let rec loop pos = (pos + exact.length <= Array.length rhs) && if not (sub_match rhs pos exact) then loop (pos + 1) else match_skip rhs (pos + Array.length exact.syms) skip' in loop pos let add_dots pos exact dots = IntSet.fold (fun i acc -> IntSet.add (pos + i) acc) exact.dots dots let rec extract_skip rhs pos {dot; exact} = match exact.skip with | None -> (* Match suffix *) let pos' = Array.length rhs - exact.length in if (pos' >= pos) && sub_match rhs pos' exact then let dots = if dot then IntSet.init_interval pos pos' else IntSet.empty in Some (add_dots pos' exact dots) else None | Some skip' -> (* Match substring *) let rec downmatch i j = if j <= i then i else if sub_match rhs j exact && match_skip rhs (j + Array.length exact.syms) skip' then j else downmatch i (j - 1) in let rec upmatch pos = if pos + exact.length > Array.length rhs then None else if not (sub_match rhs pos exact) then upmatch (pos + 1) else match extract_skip rhs (pos + Array.length exact.syms) skip' with | None -> None | Some dots -> let dots = add_dots pos exact dots in let dots = if dot then IntSet.union dots (IntSet.init_interval pos (downmatch pos (Array.length rhs - skip'.exact.length))) else dots in Some dots in upmatch pos let extract rhs exact = if not (sub_match rhs 0 exact) then IntSet.empty else let pos' = Array.length exact.syms in match exact.skip with | None -> if Array.length rhs = pos' then exact.dots else IntSet.empty | Some skip -> match extract_skip rhs pos' skip with | None -> assert (not (match_skip rhs pos' skip)); IntSet.empty | Some dots -> IntSet.union dots exact.dots end let transl_filter (type g) (g : g grammar) indices position ~lhs ~rhs = let transl_sym = Option.map (Indices.get_symbol g position) in let lhs = transl_sym lhs in let prods = match lhs with | None -> Production.all g | Some lhs -> match Symbol.desc g lhs with | T _ -> error position "left-handside of a filter should be a non-terminal" | N n -> indices.Indices.prod_by_lhs.:(n) in let filter = Globbing.parse g indices rhs in let matching_dots prod = Globbing.extract (Production.rhs g prod) filter in let matching_states prod = IntSet.fold (fun pos acc -> IndexSet.union indices.by_items.:(Item.make g prod pos) acc) (matching_dots prod) IndexSet.empty in IndexSet.bind prods matching_states let compile_reduce_expr (type g) (g : g grammar) rg trie re = let open Info in let targets = ref IndexSet.empty in let immediate = ref IndexSet.empty in let rec follow path (node : g Redgraph.target_trie) (label, k : _ Label.t * _ K.t) = match k with | K.Accept -> if false then print_endline (Lr1.list_to_string g (List.rev path)); immediate := IndexSet.union (IndexSet.inter label.filter node.immediates) !immediate; targets := IndexMap.fold (fun lr1 target acc -> if IndexSet.mem lr1 label.filter then IndexSet.add target acc else acc ) node.targets !targets | k -> IndexMap.iter begin fun lr1 node' -> if IndexSet.mem lr1 label.Label.filter then derive (lr1 :: path) node' k end node.sub and derive path node k = List.iter (follow path node) (K.derive g rg (Lr1.all g) k) in derive [] trie (K.More (re, K.Done)); (* if printf_debug then Printf.printf "pattern:\n\ - goto: %s\n\ - immediate: %s\n" (string_of_indexset ~index:(string_of_goto g) !goto) (Lr1.set_to_string g !immediate); *) (!targets, !immediate) let transl (type g) (g : g grammar) rg indices trie ~capture re = let all_cap = ref IndexSet.empty in let mk_capture kind name = let index = capture kind name in all_cap := IndexSet.add index !all_cap; IndexSet.singleton index in let rec transl ~for_reduction re = Expr.make re.position @@ match re.desc with | Atom (capture, symbol, mark) -> if for_reduction && Option.is_some capture then error re.position "Captures are not allowed inside reductions"; let set = match symbol with | None -> Lr1.all g | Some sym -> let sym = Indices.get_symbol g re.position sym in if for_reduction && Symbol.is_terminal g sym then warn re.position "A reduction can only match non-terminals"; indices.Indices.by_incoming_symbol.:(sym) in let cap = match capture with | None -> IndexSet.empty | Some name -> mk_capture Value name in Expr.Seq [ Expr.make re.position (Expr.Set (set, cap)); Expr.make re.position (Expr.Usage (Usage.singleton mark)); ] | Alternative res -> Expr.Alt (List.map (transl ~for_reduction) res) | Repetition {expr; policy} -> Expr.Star (transl ~for_reduction expr, policy) | Reduce {capture; policy; expr; mark} -> if for_reduction then error re.position "Reductions cannot be nested"; (* print_cmon stderr (Front.Syntax.cmon_regular_expression expr);*) let re = transl ~for_reduction:true expr in let pattern, immediate = compile_reduce_expr g rg trie re in if false then warn re.position "Reduce pattern is matching %d cases (and matches immediately for %d states)" (IndexSet.cardinal pattern) (IndexSet.cardinal immediate); let capture, capture_end = match capture with | None -> IndexSet.empty, IndexSet.empty | Some name -> let capture_start = mk_capture Start_loc name in let capture_end = mk_capture End_loc name in (capture_start, capture_end) in let r = Expr.Reduce (capture_end, {capture; pattern; policy}) in let core = if IndexSet.is_empty immediate then r else if immediate == Lr1.all g then Expr.Alt [Expr.make re.position r; Expr.make re.position (Expr.Seq [])] else Expr.Alt [Expr.make re.position r; Expr.make re.position (Expr.Filter immediate)] in Expr.Seq [ Expr.make re.position core; Expr.make re.position (Expr.Usage (Usage.singleton mark)); ] | Concat res -> Expr.Seq (List.rev_map (transl ~for_reduction) res) | Filter {lhs; rhs} -> let lhs = Option.join lhs in let states = transl_filter g indices re.position ~lhs ~rhs in if IndexSet.is_empty states then warn re.position "No items match this filter"; Expr.Filter states in let result = transl ~for_reduction:false re in (!all_cap, result)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>