package lrgrep
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Analyse the stack of a Menhir-generated LR parser using regular expressions
Install
dune-project
Dependency
Authors
Maintainers
Sources
lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/src/kernel/redgraph.ml.html
Source file redgraph.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548(* MIT License Copyright (c) 2025 Frédéric Bour Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *) (** This module is responsible for computing viable reductions in a LR(1) parser generator. It generates a graph of states, where each state represents a configuration of the parser, including the top of the stack, the rest of the stack, and the current lookahead set. The module also computes transitions between these states based on possible reductions and goto actions. *) open Fix.Indexing open Utils open Misc open Info (*let printf_debug = false*) (* Step 1: pre-compute closure of ϵ-reductions *) (* Group items being reduced by their depth (reductions with zero, one, two producers, ...). *) let group_reductions g = function | [] -> [] | items -> let rec group depth acc = function | [] -> [acc] | (it, la) :: rest when depth = Item.position g it -> let lhs = Production.lhs g (Item.production g it) in group depth (IndexMap.update lhs (union_update la) acc) rest | otherwise -> acc :: group (depth + 1) IndexMap.empty otherwise in let compare_items (it1, _) (it2, _) = Int.compare (Item.position g it1) (Item.position g it2) in group 0 IndexMap.empty (List.sort compare_items items) type 'g stack_tree = { subs: ('g lr1 index list * 'g terminal indexset * 'g stack_tree) list; } [@@ocaml.unboxed] type 'g reduction_closure = { accepting: 'g terminal indexset; failing: 'g terminal indexset; reductions: ('g nonterminal, 'g terminal indexset) indexmap list; stacks: 'g stack_tree; } type ('g, 'n) reduction_closures = ('n, 'g reduction_closure) vector let add_subset g r set la = r := IndexSet.union (Terminal.intersect g set la) !r (* Close ϵ-reductions of each LR(1) states *) let close_lr1_reductions (type g) (g : g grammar) : (g lr1, g reduction_closure) vector = Vector.init (Lr1.cardinal g) @@ fun lr1 -> let accepting = ref IndexSet.empty in let failing = ref IndexSet.empty in let items = ref [] in let rec pop lookahead acc (item : g item index) = function | [] -> push items (item, lookahead); acc | hd :: tl as stack -> match Item.prev g item with | Some item' -> pop lookahead acc item' tl | None -> let lhs = Production.lhs g (Item.production g item) in let stack = Transition.find_goto_target g hd lhs :: stack in let subs = reduce lookahead [] stack in (stack, lookahead, {subs}) :: acc and reduce lookahead acc stack = let lr1 = List.hd stack in add_subset g failing (Lr1.reject g lr1) lookahead; add_subset g accepting (Lr1.shift_on g lr1) lookahead; IndexSet.fold begin fun red acc -> match Terminal.intersect g (Reduction.lookaheads g red) lookahead with | la when IndexSet.is_empty la -> acc | la -> pop la acc (Item.last g (Reduction.production g red)) stack end (Reduction.from_lr1 g lr1) acc in let subs = reduce (Terminal.all g) [] [lr1] in let reductions = group_reductions g !items in let failing = !failing in let accepting = !accepting in {accepting; failing; reductions; stacks = {subs}} (*let rec filter_reductions g la = function | [] -> [] | r :: rs as rrs -> let filtered = ref false in let r' = IndexMap.filter_map (fun _ la' -> let la'' = Terminal.intersect g la la' in if la' != la'' then filtered := true; if IndexSet.is_empty la'' then None else Some la'' ) r in let rs' = filter_reductions g la rs in if rs == rs' && not !filtered then rrs else r' :: rs' let rec filter_stacks g la acc = function | [] -> acc | (x, la') :: xs -> let la' = Terminal.intersect g la la' in let acc = if IndexSet.is_empty la' then acc else (x, la') :: acc in filter_stacks g la' acc xs let rec merge_reduction_step map acc = function | [] -> (map, acc) | [] :: _ -> assert false | (r :: rs) :: rrs -> let acc = if list_is_empty rs then acc else rs :: acc in let augment _ a b = Some (IndexSet.union a b) in let map = IndexMap.union augment r map in merge_reduction_step map acc rrs let rec merge_reductions = function | [] -> [] | rrs -> let r, rrs' = merge_reduction_step IndexMap.empty [] rrs in r :: merge_reductions rrs'*) (* Close reductions of goto transitions *) (*let close_goto_reductions (type g) (g : g grammar) rcs : (g goto_transition, g reduction_closure) vector = let sentinel = {accepting = IndexSet.empty; failing = IndexSet.empty; reductions = []; stacks = {sub=[]}} in let table = Vector.make (Transition.goto g) sentinel in Index.rev_iter (Transition.goto g) begin fun gt -> if printf_debug then Printf.printf "## Closing %s\n" (Transition.to_string g (Transition.of_goto g gt)); let tr = Transition.of_goto g gt in let src = Transition.source g tr in let tgt = Transition.target g tr in let stacks = ref [] in let reductions = ref [] in let push_reductions = function | [] -> () | rs -> push reductions rs in let failing = ref IndexSet.empty in let accepting = ref IndexSet.empty in let rec visit_target tgt la = let rc = rcs.:(tgt) in if printf_debug then Printf.printf "- reaching target %s @ %s\n" (Lr1.to_string g tgt) (Terminal.lookaheads_to_string g la); add_subset g failing rc.failing la; add_subset g accepting rc.accepting la; if printf_debug then Printf.printf "importing %d stacks\n" (List.length rc.stacks); stacks := ([tgt], la) :: filter_stacks g la !stacks rc.stacks; match filter_reductions g la rc.reductions with | [] -> () | r :: rs -> push_reductions rs; if printf_debug then Printf.printf "importing %d reductions\n" (List.length rs); IndexMap.iter visit_nt r and visit_nt nt la = let gt' = Transition.find_goto g src nt in if true || Index.compare gt' gt <= 0 then visit_target (Transition.target g (Transition.of_goto g gt')) la else let rc = table.:(gt') in add_subset g failing rc.failing la; add_subset g accepting rc.accepting la; stacks := filter_stacks g la !stacks rc.stacks; push_reductions (filter_reductions g la rc.reductions) in visit_target tgt (Terminal.all g); let failing = !failing in let accepting = !accepting in let stacks = !stacks in let reductions = merge_reductions !reductions in table.:(gt) <- {accepting; failing; reductions; stacks} end; flush stdout; table *) let dump_closure ?(failing=false) g print_label vector = Vector.iteri begin fun st def -> let has_failing = failing && IndexSet.is_not_empty def.failing in let has_reductions = not (list_is_empty def.reductions) in let has_stacks = not (list_is_empty def.stacks.subs) in if has_failing || has_reductions || has_stacks then Printf.fprintf stdout "%s:\n" (print_label st); if has_failing then Printf.fprintf stdout "- failing: %s\n" (string_of_indexset ~index:(Terminal.to_string g) def.failing); if has_reductions then ( Printf.fprintf stdout "- reductions:\n"; List.iter (fun map -> let first = ref true in IndexMap.iter (fun nt la -> if !first then (Printf.fprintf stdout " - "; first := false) else Printf.fprintf stdout " "; Printf.fprintf stdout "%s @ %s\n" (Nonterminal.to_string g nt) (Terminal.lookaheads_to_string g la); ) map ) def.reductions ); let rec print_stacks indent = function | {subs = []} -> () | {subs} -> let indent = " " ^ indent in List.iter begin fun (stack, la, sub') -> Printf.fprintf stdout "%s- %s @ %s\n" indent (Lr1.list_to_string g stack) (Terminal.lookaheads_to_string g la); print_stacks indent sub' end subs in if has_stacks then Printf.fprintf stdout "- stacks:\n"; print_stacks "" def.stacks; end vector (* Reduction targets indexation *) module Target = Unsafe_cardinal() type 'g target = 'g Target.t type 'g targets = ('g target, 'g terminal indexset) indexmap type 'g target_trie = { mutable sub: ('g lr1, 'g target_trie) indexmap; mutable immediates: 'g lr1 indexset; mutable targets: ('g lr1, 'g target index) indexmap; } let index_targets (type g) (g : g grammar) rc : g target_trie * (g goto_transition, g targets) vector = (* Index sources of goto transitions *) let goto_sources = Vector.make (Lr1.cardinal g) IndexSet.empty in Index.rev_iter (Transition.goto g) begin fun gt -> let tr = (Transition.of_goto g gt) in goto_sources.@(Transition.target g tr) <- IndexSet.add gt end; (* Allocate target identifiers *) let module Gen = Gensym() in let open Target.Eq(struct type t = g include Gen end) in let Refl = eq in (* Targets by goto transition *) let by_goto = Vector.make (Transition.goto g) IndexMap.empty in (* Manage trie nodes *) let fresh_node () = { sub = IndexMap.empty; immediates = IndexSet.empty; targets = IndexMap.empty; } in let get_child (node, lr1) = match IndexMap.find_opt lr1 node.sub with | Some node' -> node' | None -> let node' = fresh_node () in node.sub <- IndexMap.add lr1 node' node.sub; node' in let root = fresh_node () in root.immediates <- Lr1.all g; let rec follow_path = function | [] -> assert false | [lr1] -> (root, lr1) | lr1 :: path -> (get_child (follow_path path), lr1) in (* Construct target trie *) Index.rev_iter (Lr1.cardinal g) begin fun tgt -> (* For each LR(1), there are three sources of reduction targets: - stacks directly reachable from this state, these are marked as "immediate" in the trie - goto transitions reaching this target (found using the goto_sources) - composition of both *) let rec visit_stacks acc {subs} = List.fold_left begin fun acc (stack, la, sub') -> let acc = (follow_path stack, la) :: acc in visit_stacks acc sub' end acc subs in let roots = visit_stacks [] rc.:(tgt).stacks in (* 1. Register immediates *) List.iter (fun ((node, lr1), _) -> node.immediates <- IndexSet.add lr1 node.immediates) roots; (* Goto sources *) let sources = goto_sources.:(tgt) in if IndexSet.is_not_empty sources then (* Prepend all goto transitions (by construction, rc stacks already end with tgt) *) let roots = (get_child (root, tgt), Terminal.all g) :: List.map (fun (root, la) -> (get_child root, la)) roots in List.iter begin fun (root, la) -> IndexSet.iter begin fun gt -> let src = Transition.source g (Transition.of_goto g gt) in let index = match IndexMap.find_opt src root.targets with | Some index -> index | None -> let index = Gen.fresh () in root.targets <- IndexMap.add src index root.targets; index in by_goto.@(gt) <- IndexMap.add index la end sources; end roots end; stopwatch 2 "indexed %d targets" (cardinal Gen.n); (* Done *) (root, by_goto) (* Graph construction *) module Step = Unsafe_cardinal() type 'g step = 'g Step.t let get_stream ?(initial=0) stream = let s = ref stream in let d = ref initial in fun i -> assert (i >= !d); while i > !d do s := Lazy.force (!s).lnext; incr d; done; (!s).lvalue type 'g transition = { reached: 'g target indexset; reachable: 'g target indexset; step: 'g step index; } type 'g graph = ('g step, ('g lr1, 'g transition list) indexmap) vector let make (type g) (g : g grammar) rc targets : g graph = let open IndexBuffer in let module Cells = Gensym() in let module Links = Gen.Make() in let cells : (Cells.n, g lr1 indexset) Dyn.t = Dyn.make IndexSet.empty in let open struct type label = g lr1 index * g target indexset * int * Cells.n index * Cells.n index * g lr1 indexset end in let links : (Links.n, label) Gen.t = Links.get_generator () in let table = Vector.make (Nonterminal.cardinal g) IndexSet.Map.empty in let get_cell nt la = let map0 = table.:(nt) in match IndexSet.Map.find_opt la map0 with | Some index -> index | None -> let index = Cells.fresh () in table.:(nt) <- IndexSet.Map.add la index map0; index in let initial = Cells.fresh () in let sink = Cells.fresh () in let rec explore_cell cell nt la src = let gt = Transition.find_goto g src nt in let reached = IndexMap.deflate targets.:(gt) (fun _ la' -> not (IndexSet.disjoint la la')); in let predecessors = get_stream (Lr1.predecessors g src) in let tgt = Transition.target g (Transition.of_goto g gt) in explore_transitions cell src reached la predecessors rc.:(tgt).reductions and explore_transitions cell0 src reached la0 predecessors reductions = let result = ref [] in List.iteri begin fun depth goto -> IndexMap.iter begin fun nt la -> let la = IndexSet.inter la0 la in if IndexSet.is_not_empty la then ( let cell = get_cell nt la in let states = predecessors depth in let done_ = Dyn.get cells cell in let todo = IndexSet.diff states done_ in push result (src, reached, depth, cell0, cell, states); if IndexSet.is_not_empty todo then ( Dyn.set cells cell (IndexSet.union todo done_); IndexSet.rev_iter (explore_cell cell nt la) todo; ) ); end goto end reductions; match !result with | [] -> ignore (Gen.add links (src, reached, 0, cell0, sink, IndexSet.empty)); | result -> List.iter (fun tr -> ignore (Gen.add links tr)) result in Index.iter (Lr1.cardinal g) begin fun lr1 -> let predecessors = get_stream ~initial:(-1) (Lr1.predecessors g lr1) in explore_transitions initial lr1 IndexSet.empty (Terminal.regular g) predecessors rc.:(lr1).reductions end; stopwatch 2 "raw redgraph: %d cells, %d links" (cardinal Cells.n) (cardinal Links.n); let module Min = Valmari.Minimize(struct type t = label let compare (lr1, targets1, depth1, _src1, _dst1, states1) (lr2, targets2, depth2, _src2, _dst2, states2) = let c = Index.compare lr1 lr2 in if c <> 0 then c else let c = Int.compare depth1 depth2 in if c <> 0 then c else let c = IndexSet.compare targets1 targets2 in if c <> 0 then c else let c = IndexSet.compare states1 states2 in c end)(struct type states = Cells.n let states = Cells.n type transitions = Links.n let transitions = Links.n let source tr = let (_,_,_,x,_,_) = Gen.get links tr in x let target tr = let (_,_,_,_,x,_) = Gen.get links tr in x let label tr = Gen.get links tr let initials f = f initial let finals f = Index.iter Cells.n f let refinements f = f (fun ~add -> add initial); f (fun ~add -> add sink) end) in let initial = Option.get (Min.transport_state initial) in let sink = Option.get (Min.transport_state sink) in stopwatch 2 "minimized redgraph: %d cells, %d links" (cardinal Min.states) (cardinal Min.transitions); let cells_outgoing = Vector.make Min.states IndexMap.empty in let cells_depth = Vector.make Min.states 0 in Index.rev_iter Min.transitions begin fun tr -> let source = Min.source tr in let target = Min.target tr in let lr, _, depth, _, _, _ = Min.label tr in cells_outgoing.@(source) <- IndexMap.update lr (add_update tr); cells_depth.@(target) <- Int.max depth end; stopwatch 2 "redgraph: indexed transitions"; let succ f tr = let (_, _, _, _, _, states) = Min.label tr in let outgoing = cells_outgoing.:(Min.target tr) in IndexSet.rev_iter (fun src -> IndexSet.iter f (IndexMap.find src outgoing)) states in let reachable = Vector.init Min.transitions (fun tr -> let acc = ref IndexSet.empty in succ (fun tr' -> let (_, targets, _, _, _, _) = Min.label tr' in acc := IndexSet.union targets !acc ) tr; !acc ) in Tarjan.close_relation succ reachable; stopwatch 2 "redgraph: reachability closure"; let module Steps = Step.Const(struct type t = g let cardinal = Vector.fold_left (+) (Vector.length_as_int cells_depth - 1) cells_depth let () = stopwatch 2 "redgraph: %d steps" cardinal end) in let enum = Index.enumerate Steps.n in let step_zero = enum () in let cells_steps = Vector.mapi (fun cell depth -> if cell = initial || cell = sink then step_zero else ( for _ = 0 to depth - 1 do ignore (enum ()) done; enum () ) ) cells_depth in let steps = Vector.make Steps.n IndexMap.empty in Vector.rev_iteri begin fun cell step -> steps.:(step) <- IndexMap.map begin fun trs -> List.map (fun tr -> let (_, reached, depth, _, _, _) = Min.label tr in let reachable = reachable.:(tr) in let target = cells_steps.:(Min.target tr) in let step = Index.of_int Steps.n (Index.to_int target - depth) in {reached; reachable; step} ) (IndexSet.elements trs) end cells_outgoing.:(cell) end cells_steps; steps type 'g action = | Advance of 'g step index | Switch of ('g lr1, 'g transition list) indexmap let initial (type g) (gr : g graph) (lr1 : g lr1 index) = match IndexMap.find_opt lr1 (Vector.as_array gr).(0) with | None -> [] | Some l -> l let follow gr step = match (step : _ index :> int) with | 0 -> Switch IndexMap.empty | step' -> let map = gr.:(step) in if IndexMap.is_empty map then Advance (Index.of_int (Vector.length gr) (step' + 1)) else Switch map
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>