package lrgrep
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Analyse the stack of a Menhir-generated LR parser using regular expressions
Install
dune-project
Dependency
Authors
Maintainers
Sources
lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/src/kernel/info.ml.html
Source file info.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907(* MIT License * * Copyright (c) 2025 Frédéric Bour * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. *) (** This module defines data structures and operations for handling grammar information in a structured way. It includes representations for terminals, non-terminals, productions, and LR states, along with their transitions and reductions. The module is designed to work with Menhir's grammar representation and extends it with additional functionality for convenience. *) open Utils open Misc open Fix.Indexing module type GRAMMAR = MenhirSdk.Cmly_api.GRAMMAR module UC_terminal = Unsafe_cardinal() module UC_nonterminal = Unsafe_cardinal() module UC_production = Unsafe_cardinal() module UC_lr0 = Unsafe_cardinal() module UC_lr1 = Unsafe_cardinal() module UC_item = Unsafe_cardinal() module UC_goto_transition = Unsafe_cardinal() module UC_shift_transition = Unsafe_cardinal() module UC_reduction = Unsafe_cardinal() type 'g terminal = 'g UC_terminal.t type 'g nonterminal = 'g UC_nonterminal.t type 'g symbol = ('g terminal, 'g nonterminal) Sum.n type 'g production = 'g UC_production.t type 'g item = 'g UC_item.t type 'g lr0 = 'g UC_lr0.t type 'g lr1 = 'g UC_lr1.t type 'g goto_transition = 'g UC_goto_transition.t type 'g shift_transition = 'g UC_shift_transition.t type 'g transition = ('g goto_transition, 'g shift_transition) Sum.n type 'g reduction = 'g UC_reduction.t type 'g grammar = { raw: (module MenhirSdk.Cmly_api.GRAMMAR); terminal_n : 'g terminal cardinal; terminal_all: 'g terminal indexset; terminal_regular: 'g terminal indexset; terminal_table : (string, 'g terminal index) Hashtbl.t; nonterminal_n : 'g nonterminal cardinal; nonterminal_all: 'g nonterminal indexset; nonterminal_table : (string, 'g nonterminal index) Hashtbl.t; symbol_all : 'g symbol indexset; production_lhs : ('g production, 'g nonterminal index) vector; production_rhs : ('g production, 'g symbol index array) vector; production_all : 'g production indexset; item_productions : ('g item, 'g production index) vector; item_offsets : ('g production, int) vector; lr0_items : ('g lr0, 'g item indexset) vector; lr0_incoming : ('g lr0, 'g symbol index option) vector; lr0_is_entrypoint : ('g lr0, 'g production index option) vector; transition_source : ('g transition, 'g lr1 index) vector; transition_target : ('g transition, 'g lr1 index) vector; transition_shift_sym : ('g shift_transition, 'g terminal index) vector; (*transition_shift_table: ('g lr1, ('g terminal, 'g shift_transition index) indexmap) vector;*) transition_goto_sym : ('g goto_transition, 'g nonterminal index) vector; transition_goto_table: ('g lr1, ('g nonterminal, 'g goto_transition index) indexmap) vector; transition_predecessors: ('g lr1, 'g transition indexset) vector; transition_successors: ('g lr1, 'g transition indexset) vector; transition_accepting : 'g goto_transition indexset; lr1_all : 'g lr1 indexset; lr1_lr0 : ('g lr1, 'g lr0 index) vector; lr1_wait : 'g lr1 indexset; lr1_accepting : 'g lr1 indexset; lr1_reduce_on : ('g lr1, 'g terminal indexset) vector; lr1_shift_on : ('g lr1, 'g terminal indexset) vector; lr1_reject : ('g lr1, 'g terminal indexset) vector; lr1_entrypoints : 'g lr1 indexset; lr1_entrypoint_table : (string, 'g lr1 index) Hashtbl.t; lr1_predecessors : ('g lr1, 'g lr1 indexset lazy_stream) vector; reduction_state : ('g reduction, 'g lr1 index) vector; reduction_production : ('g reduction, 'g production index) vector; reduction_lookaheads : ('g reduction, 'g terminal indexset) vector; reduction_from_lr1 : ('g lr1, 'g reduction indexset) vector; } let raw g = g.raw module Lift() = struct type g let loaded = ref false module Load_grammar(G : MenhirSdk.Cmly_api.GRAMMAR) = struct let () = if !loaded then invalid_arg "Info.Lift.Load: grammar can be loaded only once" else loaded := true module Import (UC : UNSAFE_CARDINAL) (M : sig type t val count : int val of_int : int -> t val to_int : t -> int end) = struct include UC.Const(struct type t = g let cardinal = M.count end) let of_g i = Index.of_int n (M.to_int i) let to_g i = M.of_int (Index.to_int i) let all = IndexSet.all n end module Terminal = struct include Import(UC_terminal)(G.Terminal) let regular = IndexSet.init_from_set n (fun t -> match G.Terminal.kind (G.Terminal.of_int (t : _ index :> int)) with | `EOF | `REGULAR -> true | `PSEUDO | `ERROR -> false ) end module Nonterminal = Import(UC_nonterminal)(G.Nonterminal) module Symbol = struct let n = Sum.cardinal Terminal.n Nonterminal.n let all = IndexSet.all n let of_g = function | G.T t -> Sum.inj_l (Terminal.of_g t) | G.N n -> Sum.inj_r Terminal.n (Nonterminal.of_g n) (*let to_g t = match Sum.prj Terminal.n t with | L t -> G.T (Terminal.to_g t) | R n -> G.N (Nonterminal.to_g n)*) end module Production = struct include Import(UC_production)(G.Production) let lhs = Vector.init n (fun p -> Nonterminal.of_g (G.Production.lhs (to_g p))) let rhs = Vector.init n @@ fun p -> Array.map (fun (sym,_,_) -> Symbol.of_g sym) (G.Production.rhs (to_g p)) end module Item = struct let count = ref 0 let offsets = Vector.init Production.n (fun prod -> let position = !count in count := !count + Array.length Production.rhs.:(prod) + 1; position ) include UC_item.Const(struct type t = g let cardinal = !count end) let productions = Vector.make' n (fun () -> Index.of_int Production.n 0) let () = let enum = Index.enumerate n in Index.iter Production.n @@ fun prod -> for _ = 0 to Array.length Production.rhs.:(prod) do productions.:(enum ()) <- prod done end module Lr0 = struct include Import(UC_lr0)(G.Lr0) let items = Vector.init n @@ fun lr0 -> to_g lr0 |> G.Lr0.items |> List.map (fun (p,pos) -> Index.of_int Item.n (Item.offsets.:(Production.of_g p) + pos)) |> IndexSet.of_list let incoming = Vector.init n @@ fun lr0 -> to_g lr0 |> G.Lr0.incoming |> Option.map Symbol.of_g let is_entrypoint = Vector.map (fun items -> if not (IndexSet.is_singleton items) then None else let item = IndexSet.choose items in let prod = Item.productions.:(item) in if Index.to_int item = Item.offsets.:(prod) then Some prod else None ) items end module Lr1 = struct include Import(UC_lr1)(G.Lr1) let lr0 = Vector.init n @@ fun lr1 -> Lr0.of_g (G.Lr1.lr0 (to_g lr1)) end module Transition = struct let shift_count, goto_count = let shift_count = ref 0 in let goto_count = ref 0 in (* Count goto and shift transitions by iterating on all states and transitions *) G.Lr1.iter begin fun lr1 -> List.iter begin fun (sym, _) -> match sym with | G.T _ -> incr shift_count | G.N _ -> incr goto_count end (G.Lr1.transitions lr1) end; (!shift_count, !goto_count) module Goto = UC_goto_transition.Const(struct type t = g let cardinal = goto_count end) module Shift = UC_shift_transition.Const(struct type t = g let cardinal = shift_count end) let any = Sum.cardinal Goto.n Shift.n let of_goto = Sum.inj_l let of_shift = Sum.inj_r Goto.n (* Vectors to store information on states and transitions. We allocate a bunch of data structures (sources, targets, t_symbols, nt_symbols and predecessors vectors, t_table and nt_table hash tables), and then populate them by iterating over all transitions. *) let sources = Vector.make' any (fun () -> Index.of_int Lr1.n 0) let targets = Vector.make' any (fun () -> Index.of_int Lr1.n 0) let shift_sym = Vector.make' Shift.n (fun () -> Index.of_int Terminal.n 0) let goto_sym = Vector.make' Goto.n (fun () -> Index.of_int Nonterminal.n 0) (* Tables to associate a pair of a state and a symbol to a transition. *) let goto_table = Vector.make Lr1.n IndexMap.empty (*let shift_table = Vector.make Lr1.n IndexMap.empty*) (* A vector to store the predecessors of an lr1 state. We cannot compute them directly, we discover them by exploring the successor relation below. *) let predecessors = Vector.make Lr1.n IndexSet.empty let successors = (* We populate all the data structures allocated above, i.e. the vectors t_sources, t_symbols, t_targets, nt_sources, nt_symbols, nt_targets and predecessors, as well as the tables t_table and nt_table, by iterating over all successors. *) let next_goto = Index.enumerate Goto.n in let next_shift = Index.enumerate Shift.n in Vector.init Lr1.n begin fun source -> List.fold_right begin fun (sym, target) acc -> let target = Lr1.of_g target in let index = match sym with | G.T t -> let t = Terminal.of_g t in let index = next_shift () in shift_sym.:(index) <- t; (*shift_table.@(source) <- IndexMap.add t index;*) of_shift index | G.N nt -> let nt = Nonterminal.of_g nt in let index = next_goto () in goto_sym.:(index) <- nt; goto_table.@(source) <- IndexMap.add nt index; of_goto index in sources.:(index) <- source; targets.:(index) <- target; predecessors.@(target) <- IndexSet.add index; IndexSet.add index acc end (G.Lr1.transitions (Lr1.to_g source)) IndexSet.empty end let accepting = let acc = ref IndexSet.empty in Index.rev_iter Lr1.n begin fun lr1 -> match Lr0.is_entrypoint.:(Lr1.lr0.:(lr1)) with | None -> () | Some prod -> let sym = match Sum.prj Terminal.n Production.rhs.:(prod).(0) with | L _ -> assert false | R nt -> nt in acc := IndexSet.fold_right (fun acc tr -> match Sum.prj Goto.n tr with | L gt when goto_sym.:(gt) = sym -> IndexSet.add gt acc | _ -> acc ) !acc successors.:(lr1) end; !acc end module Lr1_extra = struct open Lr1 let accepting = ref IndexSet.empty (** The set of terminals that will trigger a reduction *) let reduce_on = Vector.init n @@ fun lr1 -> List.fold_left (fun acc (t, _) -> if G.Terminal.kind t = `PSEUDO then accepting := IndexSet.add lr1 !accepting; IndexSet.add (Terminal.of_g t) acc) IndexSet.empty (G.Lr1.get_reductions (to_g lr1)) let accepting = !accepting (** The set of terminals that will trigger a shift transition *) let shift_on = Vector.init n @@ fun lr1 -> List.fold_left (fun acc (sym, _raw) -> match sym with | G.T t -> IndexSet.add (Terminal.of_g t) acc | G.N _ -> acc) IndexSet.empty (G.Lr1.transitions (to_g lr1)) (** The set of terminals the state has no transition for *) let reject = Vector.init n @@ fun lr1 -> let result = Terminal.all in let result = IndexSet.diff result reduce_on.:(lr1) in let result = IndexSet.diff result shift_on.:(lr1) in result let wait = IndexSet.init_from_set n (fun lr1 -> match G.Lr0.incoming (Lr0.to_g lr0.:(lr1)) with | Some (G.N _) -> false | Some (G.T t) -> G.Terminal.kind t = `REGULAR && not (IndexSet.mem lr1 accepting) | None -> true ) let predecessors = Vector.init n @@ fun lr1 -> IndexSet.map (fun tr -> Transition.sources.:(tr)) Transition.predecessors.:(lr1) let entrypoints, entrypoint_table = let set = ref IndexSet.empty in let table = Hashtbl.create 7 in Index.rev_iter n (fun lr1 -> match Lr0.is_entrypoint.:(lr0.:(lr1)) with | None -> () | Some prod -> set := IndexSet.add lr1 !set; let sym, _, _ = (G.Production.rhs (Production.to_g prod)).(0) in Hashtbl.add table (G.Symbol.name sym) lr1 ); (!set, table) end module Reduction = struct let n = ref 0 let raw = let import_red reds = reds |> List.filter_map (fun (t, p) -> match G.Production.kind p with | `START -> None | `REGULAR -> Some (Production.of_g p, Terminal.of_g t) ) |> Misc.group_by ~compare:(fun (p1,_) (p2,_) -> compare_index p1 p2) ~group:(fun (p,t) ps -> p, IndexSet.of_list (t :: List.map snd ps)) |> List.sort (fun (p1,_) (p2,_) -> let l1 = Array.length Production.rhs.:(p1) in let l2 = Array.length Production.rhs.:(p2) in let c = Int.compare l1 l2 in if c <> 0 then c else compare_index Production.lhs.:(p1) Production.lhs.:(p2) ) in let import_lr1 lr1 = let reds = import_red (G.Lr1.get_reductions (Lr1.to_g lr1)) in n := !n + List.length reds; reds in Vector.init Lr1.n import_lr1 include UC_reduction.Const(struct type t = g let cardinal = !n end) let state = Vector.make' n (fun () -> Index.of_int Lr1.n 0) let production = Vector.make' n (fun () -> Index.of_int Production.n 0) let lookaheads = Vector.make n IndexSet.empty let from_lr1 = let enum = Index.enumerate n in Vector.mapi (fun lr1 reds -> List.fold_left (fun set (prod, la) -> let i = enum () in state.:(i) <- lr1; production.:(i) <- prod; lookaheads.:(i) <- la; IndexSet.add i set ) IndexSet.empty reds ) raw end let grammar = { raw = (module G); terminal_n = Terminal.n; terminal_all = Terminal.all; terminal_regular = Terminal.regular; terminal_table = Hashtbl.create 7; nonterminal_n = Nonterminal.n; nonterminal_all = Nonterminal.all; nonterminal_table = Hashtbl.create 7; symbol_all = Symbol.all; production_lhs = Production.lhs; production_rhs = Production.rhs; production_all = Production.all; item_productions = Item.productions; item_offsets = Item.offsets; lr0_items = Lr0.items; lr0_incoming = Lr0.incoming; lr0_is_entrypoint = Lr0.is_entrypoint; transition_source = Transition.sources; transition_target = Transition.targets; transition_shift_sym = Transition.shift_sym; (*transition_shift_table = Transition.shift_table;*) transition_goto_sym = Transition.goto_sym; transition_goto_table = Transition.goto_table; transition_predecessors = Transition.predecessors; transition_successors = Transition.successors; transition_accepting = Transition.accepting; lr1_all = Lr1.all; lr1_lr0 = Lr1.lr0; lr1_wait = Lr1_extra.wait; lr1_accepting = Lr1_extra.accepting; lr1_reduce_on = Lr1_extra.reduce_on; lr1_shift_on = Lr1_extra.shift_on; lr1_reject = Lr1_extra.reject; lr1_entrypoints = Lr1_extra.entrypoints; lr1_entrypoint_table = Lr1_extra.entrypoint_table; lr1_predecessors = iterate_vector Lr1_extra.predecessors; reduction_state = Reduction.state; reduction_production = Reduction.production; reduction_lookaheads = Reduction.lookaheads; reduction_from_lr1 = Reduction.from_lr1; } end end module type INDEXED = sig type 'g n val cardinal : 'g grammar -> 'g n cardinal val of_int : 'g grammar -> int -> 'g n index end module Terminal = struct type 'g n = 'g terminal let cardinal g = g.terminal_n let of_int g i = Index.of_int (cardinal g) i let to_string g i = let open (val g.raw) in Terminal.name (Terminal.of_int (Index.to_int i)) let all g = g.terminal_all let regular g = g.terminal_regular let semantic_value g i = let open (val g.raw) in Terminal.typ (Terminal.of_int (Index.to_int i)) let intersect g a b = if a == g.terminal_all then b else if b == g.terminal_all then a else IndexSet.inter a b let is_error g i = let open (val g.raw) in match Terminal.kind (Terminal.of_int (i : _ index :> int)) with | `ERROR -> true | _ -> false let lookaheads_to_string g la = match IndexSet.cardinal la with | n when n > 10 -> Printf.sprintf "<%d lookaheads>" n | _ -> string_concat_map ~wrap:("<",">") "," (to_string g) (IndexSet.elements la) let terminal_table g = if Hashtbl.length g.terminal_table = 0 then Index.iter (cardinal g) (fun t -> Hashtbl.add g.terminal_table (to_string g t) t); g.terminal_table let find g ?(approx=3) name = let table = terminal_table g in match Hashtbl.find_opt table name, approx with | Some t, _ -> Result.Ok t | None, 0 -> Result.Error [] | None, dist -> Result.Error (Damerau_levenshtein.filter_approx ~dist name (Hashtbl.to_seq table)) end module Nonterminal = struct type 'g n = 'g nonterminal let cardinal g = g.nonterminal_n let of_int g i = Index.of_int (cardinal g) i let all g = g.nonterminal_all let to_string g i = let open (val g.raw) in Nonterminal.name (Nonterminal.of_int (Index.to_int i)) let to_mangled_string g i = let open (val g.raw) in Nonterminal.mangled_name (Nonterminal.of_int (Index.to_int i)) let find_mangled g str = let enum = Index.enumerate (cardinal g) in let rec loop () = let i = enum () in if to_mangled_string g i = str then i else loop () in match loop () with | i -> Some i | exception Index.End_of_set -> None let kind g i = let open (val g.raw) in Nonterminal.kind (Nonterminal.of_int (Index.to_int i)) let semantic_value g i = let open (val g.raw) in Nonterminal.typ (Nonterminal.of_int (Index.to_int i)) let nullable g i = let open (val g.raw) in Nonterminal.nullable (Nonterminal.of_int (Index.to_int i)) let first g i = let open (val g.raw) in Nonterminal.of_int (Index.to_int i) |> Nonterminal.first |> List.map (fun t -> Index.of_int g.terminal_n (Terminal.to_int t)) |> IndexSet.of_list let nonterminal_table g = if Hashtbl.length g.nonterminal_table = 0 then Index.iter (cardinal g) (fun t -> Hashtbl.add g.nonterminal_table (to_string g t) t); g.nonterminal_table let find g ?(approx=3) name = let table = nonterminal_table g in match Hashtbl.find_opt table name, approx with | Some t, _ -> Result.Ok t | None, 0 -> Result.Error (`Dym []) | None, dist -> match find_mangled g name with | Some i -> Result.Error (`Mangled i) | None -> let candidates = Damerau_levenshtein.filter_approx ~dist name (Hashtbl.to_seq table) in Result.Error (`Dym candidates) end module Symbol = struct type 'g n = 'g symbol let cardinal g = Sum.cardinal g.terminal_n g.nonterminal_n let of_int g i = Index.of_int (cardinal g) i type 'g desc = | T of 'g terminal index | N of 'g nonterminal index let prj g i = Sum.prj g.terminal_n i let desc g i = match prj g i with | L t -> T t | R n -> N n let is_terminal g t = match prj g t with | L _ -> true | R _ -> false let is_nonterminal g t = match prj g t with | L _ -> false | R _ -> true let to_string g ?mangled t = let open (val g.raw) in match prj g t with | L t -> symbol_name ?mangled (T (Terminal.of_int (Index.to_int t))) | R n -> symbol_name ?mangled (N (Nonterminal.of_int (Index.to_int n))) let semantic_value g t = match prj g t with | L t -> Some (Option.value (Terminal.semantic_value g t) ~default:"unit") | R n -> Nonterminal.semantic_value g n let all g = g.symbol_all let inj_t _ t = Sum.inj_l t let inj_n g n = Sum.inj_r g.terminal_n n let find g ?(approx=3) name = let ttable = Terminal.terminal_table g in match Hashtbl.find_opt ttable name with | Some t -> Result.Ok (inj_t g t) | None -> let ntable = Nonterminal.nonterminal_table g in match Hashtbl.find_opt ntable name, approx with | Some n, _ -> Result.Ok (inj_n g n) | None, 0 -> Result.Error (`Dym []) | None, dist -> match Nonterminal.find_mangled g name with | Some i -> Result.Error (`Mangled i) | None -> let candidates = Damerau_levenshtein.filter_approx ~dist name (Seq.append (Seq.map (fun (s,t) -> (s, inj_t g t)) (Hashtbl.to_seq ttable)) (Seq.map (fun (s,n) -> (s, inj_n g n)) (Hashtbl.to_seq ntable))) in Result.Error (`Dym candidates) end module Production = struct type 'g n = 'g production let cardinal g = Vector.length g.production_lhs let of_int g i = Index.of_int (cardinal g) i let lhs g i = g.production_lhs.:(i) let rhs g i = g.production_rhs.:(i) let length g i = Array.length (rhs g i) let kind g i = let open (val g.raw) in Production.kind (Production.of_int (Index.to_int i)) let all g = g.production_all end (* Explicit representation of LR(0) items *) module Item = struct type 'g n = 'g item let cardinal g = Vector.length g.item_productions let of_int g i = Index.of_int (cardinal g) i let make g prod pos = if pos < 0 || pos > Production.length g prod then invalid_arg "Info.Item.make: pos out of bounds"; Index.of_int (cardinal g) (g.item_offsets.:(prod) + pos) let last g prod = make g prod (Production.length g prod) let production g i = g.item_productions.:(i) let position g i = ((i : _ index :> int) - g.item_offsets.:(production g i)) let desc g i = let prod = production g i in (prod, (i : _ index :> int) - g.item_offsets.:(prod)) let prev g (i : 'g n index) = match Index.pred i with | Some j when not (Index.equal (production g i) (production g j)) -> None | result -> result let is_reducible g i = let prod = production g i in ((i : _ index :> int) - g.item_offsets.:(prod)) = Production.length g prod let to_string g i = let prod, pos = desc g i in let b = Buffer.create 63 in Buffer.add_string b (Nonterminal.to_string g (Production.lhs g prod)); Buffer.add_char b ':'; let rhs = Production.rhs g prod in let add_sym sym = Buffer.add_char b ' '; Buffer.add_string b (Symbol.to_string g sym); in for i = 0 to pos - 1 do add_sym rhs.(i) done; Buffer.add_string b " ."; for i = pos to Array.length rhs - 1 do add_sym rhs.(i) done; Buffer.contents b end module Lr0 = struct type 'g n = 'g lr0 let cardinal g = Vector.length g.lr0_items let of_int g i = Index.of_int (cardinal g) i (* See [Lr1.incoming]. *) let incoming g i = g.lr0_incoming.:(i) (* See [Lr1.items]. *) let items g i = g.lr0_items.:(i) (* If the state is an initial state, returns the pseudo (start) production that recognizes this entrypoint. *) let is_entrypoint g i = g.lr0_is_entrypoint.:(i) end module Lr1 = struct type 'g n = 'g lr1 let cardinal g = Vector.length g.lr1_reduce_on let of_int g i = Index.of_int (cardinal g) i let all g = g.lr1_all let accepting g = g.lr1_accepting (* A ``wait'' state is an LR(1) state in which the parser needs to look at more input before knowing how to proceed. Wait states are the initial states and the targets of SHIFT transitions (states with a terminal as incoming symbol), except the accepting ones (after reading EOF, the only valid action is to reduce). *) let wait g = g.lr1_wait (* Get the LR(0) "core" state *) let to_lr0 g i = g.lr1_lr0.:(i) (* The symbol annotating the incoming transitions of a state. There is none for initial states, and at most one for others. *) let incoming g i = Lr0.incoming g (to_lr0 g i) (* Get the items in the kernel of a state (before closure). *) let items g i = Lr0.items g (to_lr0 g i) let is_entrypoint g i = Lr0.is_entrypoint g (to_lr0 g i) let entrypoint_table g = g.lr1_entrypoint_table let entrypoints g = g.lr1_entrypoints (* Printing functions, for debug purposes. Not nice for the end-user (FIXME). *) let symbol_to_string g lr1 = match incoming g lr1 with | Some sym -> Symbol.to_string g sym | None -> let entrypoint = Option.get (is_entrypoint g lr1) in (Symbol.to_string g (Production.rhs g entrypoint).(0) ^ ":") let to_string g lr1 = string_of_index lr1 ^ ":" ^ symbol_to_string g lr1 let list_to_string g lr1s = string_concat_map ~wrap:("[","]") "; " (to_string g) lr1s let set_to_string g lr1s = string_concat_map ~wrap:("{","}") ", " (to_string g) (IndexSet.elements lr1s) (** [shift_on t] is the set of lookaheads that state [t] can shift *) let shift_on g i = g.lr1_shift_on.:(i) (** [reduce_on t] is the set of lookaheads that trigger a reduction in state [t] *) let reduce_on g i = g.lr1_reduce_on.:(i) (** [reject t] is set of lookaheads that cause the automaton to fail when in state [t] *) let reject g i = g.lr1_reject.:(i) (** [predecessors t] is the set of LR(1) states that have transition going to [t]. *) let predecessors g i = g.lr1_predecessors.:(i) (** Wrapper around [IndexSet.inter] speeding-up intersection with [all] *) let intersect g a b = if a == g.lr1_all then b else if b == g.lr1_all then a else IndexSet.inter a b let default_reduction g i = let open (val g.raw) in match Lr1.default_reduction (Lr1.of_int (i : _ index :> int)) with | None -> None | Some p -> Some (Index.of_int (Vector.length g.production_rhs) (Production.to_int p)) end module Reduction = struct type 'g n = 'g reduction let cardinal g = Vector.length g.reduction_production let of_int g i = Index.of_int (cardinal g) i (* A reduction is a triple [(lr1, prod, lookaheads)], meaning that: in state [lr1], when looking ahead at a terminal in [lookaheads], the action is to reduce [prod]. *) let state g i = g.reduction_state.:(i) let production g i = g.reduction_production.:(i) let lookaheads g i = g.reduction_lookaheads.:(i) (* All reductions applicable to an lr1 state. *) let from_lr1 g lr1 = g.reduction_from_lr1.:(lr1) end module Transition = struct (* The set of goto transitions *) let goto g = Vector.length g.transition_goto_sym (* The set of all transitions = goto U shift *) let any g = Vector.length g.transition_source (* The set of shift transitions *) let shift g = Vector.length g.transition_shift_sym (* Inject goto into any *) let of_goto _g i = Sum.inj_l i (* Inject shift into any *) let of_shift g i = Sum.inj_r (goto g) i (* Project a transition into a goto or a shift transition *) let split g i = Sum.prj (goto g) i (* [find_goto s nt] finds the goto transition originating from [s] and labelled by [nt], or raise [Not_found]. *) let find_goto g lr1 nt = match IndexMap.find_opt nt g.transition_goto_table.:(lr1) with | Some gt -> gt | None -> Printf.ksprintf invalid_arg "find_goto(%s, %s)" (Lr1.to_string g lr1) (Nonterminal.to_string g lr1) let find_goto_target g lr1 nt = g.transition_target.:(of_goto g (find_goto g lr1 nt)) (* Get the source state of a transition *) let source g i = g.transition_source.:(i) (* Get the target state of a transition *) let target g i = g.transition_target.:(i) (* Symbol that labels a transition *) let symbol g i = match split g i with | L i -> Sum.inj_r g.terminal_n g.transition_goto_sym.:(i) | R i -> Sum.inj_l g.transition_shift_sym.:(i) (* Symbol that labels a goto transition *) let goto_symbol g i = g.transition_goto_sym.:(i) (* Symbol that labels a shift transition *) let shift_symbol g i = g.transition_shift_sym.:(i) (* [successors s] returns all the transitions [tr] such that [source tr = s] *) let successors g i = g.transition_successors.:(i) (* [predecessors s] returns all the transitions [tr] such that [target tr = s] *) let predecessors g i = g.transition_predecessors.:(i) (* Accepting transitions are goto transitions from an initial state to an accepting state, recognizing one of the grammar entrypoint. *) let accepting g = g.transition_accepting let to_string g tr = Printf.sprintf "%s -> %s" (Lr1.to_string g (source g tr)) (Lr1.to_string g (target g tr)) let find g src tgt = let inter = IndexSet.inter (successors g src) (predecessors g tgt) in assert (IndexSet.is_empty inter || IndexSet.is_singleton inter); IndexSet.minimum inter end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>