package lrgrep
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>
Analyse the stack of a Menhir-generated LR parser using regular expressions
Install
dune-project
Dependency
Authors
Maintainers
Sources
lrgrep-0.3.tbz
sha256=84a1874d0c063da371e19c84243aac7c40bfcb9aaf204251e0eb0d1f077f2cde
sha512=5a16ff42a196fd741bc64a1bdd45b4dca0098633e73aa665829a44625ec15382891c3643fa210dbe3704336eab095d4024e093e37ae5313810f6754de6119d55
doc/src/kernel/automata.ml.html
Source file automata.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475(* MIT License Copyright (c) 2025 Frédéric Bour Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *) (** This module is responsible for generating a deterministic finite automaton (DFA) from a given grammar and lookahead set. The DFA is used to perform pattern matching on input tokens according to the grammar rules. The module includes several stages: - Construction of a big DFA from the grammar and lookahead set. - Minimization of the DFA. - Generation of output code for the minimized DFA. The module uses various data structures and algorithms to ensure efficient construction and minimization of the DFA, as well as to generate the corresponding OCaml code. *) open Utils open Misc open Fix.Indexing open Lrgrep_support open Info open Spec open Regexp type ('g, 'n) stacks = { domain: 'n cardinal; tops: 'n indexset; prev: 'n index -> 'n indexset; label: 'n index -> 'g lr1 index; } type priority = int let label_to_short_string g label = if IndexSet.equal label (Lr1.all g) then "<any>" else let filter = label |> IndexSet.to_seq |> Seq.map (Lr1.to_string g) |> List.of_seq in String.concat "|" filter let string_of_cap (i : Capture.t) = "v" ^ string_of_index i module NFA = struct type ('g, 'r) t = { uid: int; k: 'g K.t; transitions: ('g Label.t * ('g, 'r) t lazy_t) list; branch: ('g, 'r) branch index; mutable mark: unit ref; } let is_accepting t = match t.k with | K.Accept -> true | _ -> false let dump g ?(only_forced=true) t oc = let p fmt = Printf.fprintf oc fmt in p "digraph G {\n"; p " node[shape=rect];\n"; let todo = ref [] in let mark = ref () in let visit t = if t.mark != mark then (t.mark <- mark; push todo t) in visit t; let print t = p " st%d[label=%S];\n" t.uid (if is_accepting t then "Accept" else ""); List.iter (fun ((label : _ Label.t), t') -> if not only_forced || Lazy.is_val t' then ( let lazy t' = t' in p " st%d -> st%d [label=%S];\n" t.uid t'.uid (label_to_short_string g label.filter ^ "\n" ^ string_of_indexset ~index:string_of_cap label.captures); visit t' ) ) t.transitions; in fixpoint ~propagate:print todo; p "}\n" let compare t1 t2 = Int.compare t1.uid t2.uid let default_mark = ref () let uid = let k = ref 0 in fun () -> incr k; !k let make (type g) (g : g grammar) rg branch = let module KMap = Map.Make(struct type t = g Regexp.K.t let compare = Regexp.K.compare end) in let nfa = ref KMap.empty in let rec aux k = match KMap.find_opt k !nfa with | Some t -> t | None -> let inj ({Label. filter; usage; captures}, t) = (filter, (usage, captures, t)) in let prj filter (usage, captures, t) = ({Label. filter; usage; captures}, t) in let transitions = K.derive g rg (Lr1.all g) k |> process_transitions |> List.map inj |> IndexRefine.annotated_partition |> List.concat_map (fun (filter, l) -> List.map (prj filter) l) in let uid = uid () in let t = {uid; k; transitions; branch; mark=default_mark} in nfa := KMap.add k t !nfa; t and process_transitions = function | [] -> [] | (label, k') :: rest -> (label, lazy (aux k')) :: process_transitions rest in aux let from_branches info rg branches = Vector.mapi (fun br re -> make info rg br (Regexp.K.More (re, Regexp.K.Done))) branches.expr end module DFA = struct type ('src, 'tgt) mapping = ('tgt, 'src index * (Capture.set * Usage.set)) vector type ('g, 'r, 'dfa, 'n) state = { index: 'dfa index; branches: ('n, ('g, 'r) branch index) vector; accepting: 'n Boolvector.t; mutable transitions : ('g, 'r, 'dfa, 'n) transition list; } and ('g, 'r, 'dfa, 'src) transition = Transition : { label: 'g lr1 indexset; target: ('g, 'r, 'dfa, 'tgt) state; mapping: ('src, 'tgt) mapping; } -> ('g, 'r, 'dfa, 'src) transition type ('g, 'r, 'dfa) packed = Packed : ('g, 'r, 'dfa, 'n) state -> ('g, 'r, 'dfa) packed [@@ocaml.unboxed] type ('g, 'r, 'dfa) t = { initial: 'dfa index; states: ('dfa, ('g, 'r, 'dfa) packed) vector; domain: ('dfa, 'g lr1 indexset) vector; kernels: ('dfa, ('g, 'r) NFA.t array) vector; } let pp doc = let buf = Buffer.create 7 in PPrint.ToBuffer.pretty 0.9 80 buf (Cmon.print doc); String.split_on_char '\n' (Buffer.contents buf) let dump g t (rg : _ Redgraph.graph) oc = let p fmt = Printf.fprintf oc fmt in p "digraph G {\n"; p " node[shape=rect];\n"; Vector.iter (fun (Packed state) -> let exprs = ref [] in let accept = ref [] in let step index0 = let index = ref index0 in while match Redgraph.follow rg !index with | Advance index' -> index := index'; true | Switch _ -> false do () done; if !index = index0 then cmon_index index0 else Printf.ksprintf Cmon.constant "%d-%d" (Index.to_int !index) (Index.to_int !index - Index.to_int index0) in Array.iter begin fun nfa -> exprs := List.rev_append (pp (K.cmon ~step nfa.NFA.k)) !exprs; end t.kernels.:(state.index); Vector.iteri begin fun i br -> if Boolvector.test state.accepting i then push accept br end state.branches; p " st%d[label=\"#%d:%s\"];\n" (Index.to_int state.index) (Index.to_int state.index) (String.concat "\\l" @@ (List.rev !exprs) @ [string_concat_map "," string_of_index (List.rev !accept)]) ; List.iter (fun (Transition tr) -> p " st%d -> st%d [label=%S];\n" (Index.to_int state.index) (Index.to_int tr.target.index) (label_to_short_string g tr.label ^ "\n" ^ let caps = ref IndexSet.empty in Vector.iter (fun (_, (cap, _)) -> caps := IndexSet.union cap !caps) tr.mapping; string_of_indexset ~index:string_of_cap !caps ); ) state.transitions; ) t.states; p "}\n" type ('g, 'r) _t = T : ('g, 'r, 'dfa) t -> ('g, 'r) _t let determinize (type g r s) (g : g grammar) (branches: (g, r) branches) (stacks: (g, s) stacks) initial : (g, r) _t = let module Construction = struct include IndexBuffer.Gen.Make() type 'n prestate = { index: n index; kernel: ('n, (g, r) NFA.t) vector; accept: (g, r) branch opt index option; mutable raw_transitions: (g lr1 indexset * 'n fwd_mapping lazy_t) list; } and 'src fwd_mapping = Fwd_mapping : ('src, 'tgt) mapping * 'tgt prestate -> 'src fwd_mapping type prepacked = Prepacked : 'n prestate -> prepacked [@@ocaml.unboxed] let prestates = get_generator () let compare_kernel g1 g2 = array_compare NFA.compare g1 g2 module KernelMap = Map.Make(struct type t = (g, r) NFA.t array let compare = compare_kernel end) let kernel_make (type a) (prj : a -> (g, r) NFA.t) (ts : a list) : a array = let mark = ref () in let ts = List.filter (fun a -> let th = prj a in if th.mark != mark then ( th.mark <- mark; true ) else false ) ts in Array.of_list ts let kernel_fold f x acc = let acc = ref acc in Vector.iteri (fun i x -> acc := f i x !acc) x; !acc let dfa = ref KernelMap.empty let initial = let rec determinize_kernel : type n . (n, (g, r) NFA.t) vector -> n prestate = fun kernel -> match KernelMap.find_opt (Vector.as_array kernel) !dfa with | Some (Prepacked t') -> let Refl = assert_equal_length kernel t'.kernel in t' | None -> let accept = ref None in let rev_transitions = let make i ({Label. filter; captures; usage}, t) = (filter, (i, (captures, usage), t)) in kernel_fold (fun i nfa acc -> if NFA.is_accepting nfa && Boolvector.test branches.is_total nfa.branch then accept := Some branches.priority.:(nfa.branch); list_rev_mappend (make i) nfa.transitions acc) kernel [] in let prepare_target_kernel (index, captures, lazy nfa) = nfa, (index, captures) in let process_class label rev_targets = label, lazy ( let Packed result = rev_targets |> List.rev_map prepare_target_kernel |> kernel_make fst |> Vector.of_array in Fwd_mapping ((Vector.map snd result), determinize_kernel (Vector.map fst result)) ) in let raw_transitions = ref [] in IndexRefine.iter_merged_decomposition rev_transitions (fun label targets -> push raw_transitions (process_class label targets)); let raw_transitions = !raw_transitions in let reservation = IndexBuffer.Gen.reserve prestates in let state = { index = IndexBuffer.Gen.index reservation; kernel; accept = !accept; raw_transitions; } in IndexBuffer.Gen.commit prestates reservation (Prepacked state); dfa := KernelMap.add (Vector.as_array kernel) (Prepacked state) !dfa; state in let Vector.Packed kernel = Vector.of_array (kernel_make Fun.id (Vector.to_list initial)) in (determinize_kernel kernel).index let () = stopwatch 3 "Processed initial states" let visited: (n, s indexset) IndexBuffer.Dyn.t = IndexBuffer.Dyn.make IndexSet.empty let scheduled: (n, s indexset) IndexBuffer.Dyn.t = IndexBuffer.Dyn.make IndexSet.empty let (.*()) = IndexBuffer.Dyn.get let (.*()<-) = IndexBuffer.Dyn.set let min_clause t = (Vector.as_array t.kernel).(0).branch let () = let accepting = Vector.make (branch_count branches) [] in let todo = ref [] in let schedule bound i set = let Prepacked t as packed = IndexBuffer.Gen.get prestates i in if min_clause t <= bound then let set = IndexSet.diff set visited.*(i) in if IndexSet.is_not_empty set then ( if IndexSet.is_empty scheduled.*(i) then ( scheduled.*(i) <- set; match t.accept with | Some c when c < Opt.some bound -> begin match Opt.prj c with | Some c' -> accepting.@(c') <- List.cons packed | None -> () end | Some _ | None -> push todo packed ) else scheduled.*(i) <- IndexSet.union scheduled.*(i) set ) in let update bound (Prepacked t) = let todo = scheduled.*(t.index) in if false then Printf.eprintf "processing#%d: %s\n" (Index.to_int t.index) (Lr1.set_to_string g (IndexSet.map stacks.label todo)); visited.*(t.index) <- IndexSet.union visited.*(t.index) todo; scheduled.*(t.index) <- IndexSet.empty; let by_label = IndexSet.fold (fun stack map -> IndexMap.update (stacks.label stack) (union_update (stacks.prev stack)) map ) todo IndexMap.empty in List.iter begin fun (label, target) -> let really_empty = ref true in let expand_stack lr1 = match IndexMap.find_opt lr1 by_label with | None -> IndexSet.empty | Some stacks -> really_empty := false; stacks in let stacks = IndexSet.bind label expand_stack in if not !really_empty then let lazy (Fwd_mapping (_, t')) = target in if IndexSet.is_not_empty stacks then schedule bound t'.index stacks end t.raw_transitions in let next_bound = Index.rev_enumerate (branch_count branches) in let rec loop bound = match !todo with | [] -> let bound = next_bound () in todo := accepting.:(bound); accepting.:(bound) <- []; loop bound | todo' -> todo := []; List.iter (update bound) todo'; loop bound in try let bound = next_bound () in schedule bound initial stacks.tops; loop bound with Index.End_of_set -> () let prestates = IndexBuffer.Gen.freeze prestates let domain = Vector.init n (fun i -> IndexSet.map stacks.label visited.*(i)) end in let states = let make (Construction.Prepacked {index; kernel; _}) = let branches = Vector.map (fun t -> t.NFA.branch) kernel in let accepting = Boolvector.from_vector kernel NFA.is_accepting in Packed {index; branches; accepting; transitions = []} in Vector.map make Construction.prestates in let from_prestate (type n) (p : n Construction.prestate) : (g, r, _, n) state = let Packed t = states.:(p.index) in let Refl = assert_equal_length t.branches p.kernel in t in Vector.iteri (fun i (Construction.Prepacked p) -> let t = from_prestate p in let domain = Construction.domain.:(i) in t.transitions <- List.filter_map (fun (label, target) -> if Lazy.is_val target then let label = IndexSet.inter label domain in if IndexSet.is_not_empty label then let Construction.Fwd_mapping (mapping, target) = Lazy.force target in let target = from_prestate target in Some (Transition {label; mapping; target}) else None else None ) p.raw_transitions; ) Construction.prestates; stopwatch 3 "Determinized DFA (%d states)" (cardinal Construction.n); let kernels = Vector.make Construction.n (Vector.as_array initial) in Construction.KernelMap.iter begin fun _ (Construction.Prepacked st) -> kernels.:(st.index) <- Vector.as_array st.kernel end !Construction.dfa; T {initial = Construction.initial; states; domain = Construction.domain; kernels} let state_count dfa = Vector.length dfa.states end module Dataflow = struct type chain = (Order_chain.element * Order_chain.element) list type 'n var = ('n, Capture.n) Prod.n type 'n _var_classes = { domain: 'n cardinal; mutable classes : 'n var indexset list } type var_classes = V : 'n _var_classes -> var_classes [@@ocaml.unboxed] type ('g, 'r, 'dfa) t = { pairings : ('dfa, (('g, 'r) branch index * chain) list list) vector; accepts : ('dfa, (('g, 'r) branch index * priority) list) vector; liveness : ('dfa, Capture.set array) vector; defined : ('dfa, Capture.set array) vector; classes : ('dfa, var_classes) vector; registers : ('dfa, Register.t Capture.map array) vector; register_count : int; accepted_before : ('dfa, ('g, 'r) branch indexset) vector; } let liveness (type g r dfa n) (t : (g, r, dfa) t) (st : (g, r, dfa, n) DFA.state) = Vector.cast_array (Vector.length st.branches) t.liveness.:(st.index) let defined (type g r dfa n) (t : (g, r, dfa) t) (st : (g, r, dfa, n) DFA.state) = Vector.cast_array (Vector.length st.branches) t.defined.:(st.index) let registers (type g r dfa n) (t : (g, r, dfa) t) (st : (g, r, dfa, n) DFA.state) = Vector.cast_array (Vector.length st.branches) t.registers.:(st.index) let classes (type g r dfa n) (t : (g, r, dfa) t) (st : (g, r, dfa, n) DFA.state) : n var indexset list = let V vc = t.classes.:(st.index) in let Refl = assert_equal_cardinal vc.domain (Vector.length st.branches) in vc.classes type ('g, 'r, 'dfa, 'tgt) rev_mapping = Rev_mapping : ('g, 'r, 'dfa, 'src) DFA.state * ('src, 'tgt) DFA.mapping -> ('g, 'r, 'dfa, 'tgt) rev_mapping type ('g, 'r, 'dfa) packed_rev_mapping = Rev_packed : ('g, 'r, 'dfa, 'n) rev_mapping list -> ('g, 'r, 'dfa) packed_rev_mapping [@@ocaml.unboxed] let dump g dfa t oc = let p fmt = Printf.fprintf oc fmt in p "digraph G {\n"; p " node[shape=rect];\n"; Vector.iter (fun (DFA.Packed state) -> let acc = ref [] in let live = ref IndexSet.empty in let def = ref IndexSet.empty in let regs = ref IndexMap.empty in let liveness = liveness t state in let defined = defined t state in let registers = registers t state in let classes = classes t state in Vector.iteri (fun i br -> live := IndexSet.union liveness.:(i) !live; def := IndexSet.union defined.:(i) !def; IndexMap.iter (fun cap reg -> regs := IndexMap.update reg (cons_update cap) !regs ) registers.:(i); if Boolvector.test state.accepting i then push acc br ) state.branches; p " st%d[label=%S];\n" (Index.to_int state.index) (string_concat_map "," string_of_index (List.rev !acc) ^ "\n" ^ "live: " ^ string_of_indexset ~index:string_of_cap !live ^ "\n" ^ "defined: " ^ string_of_indexset ~index:string_of_cap !def ^ "\n" ^ "classes: " ^ string_concat_map ", " (fun vars -> string_of_indexset ~index:(fun var -> string_of_cap (snd (Prod.prj (Vector.length state.branches) var))) vars) classes ^ "\n" ^ "registers: " ^ string_concat_map "; " (fun (reg, caps) -> Printf.sprintf "%d: %s" (Index.to_int reg) (string_concat_map "," string_of_cap caps)) (IndexMap.bindings !regs)); List.iter (fun (DFA.Transition tr) -> p " st%d -> st%d [label=%S];\n" (Index.to_int state.index) (Index.to_int tr.target.index) (label_to_short_string g tr.label ^ "\n" ^ let caps = ref IndexSet.empty in Vector.iter (fun (_, (cap, _)) -> caps := IndexSet.union cap !caps) tr.mapping; string_of_indexset ~index:string_of_cap !caps); ) state.transitions; ) dfa.DFA.states; p "}\n" let reverse_transitions dfa = let table = Vector.make (DFA.state_count dfa) (Rev_packed []) in Vector.iter begin fun (DFA.Packed src) -> let process (DFA.Transition {target; mapping; _}) = match table.:(target.index) with | Rev_packed [] -> table.:(target.index) <- Rev_packed [Rev_mapping (src, mapping)] | Rev_packed (Rev_mapping (_, mapping0) :: _ as xs) -> let Refl = assert_equal_length mapping mapping0 in table.:(target.index) <- Rev_packed (Rev_mapping (src, mapping) :: xs) in List.iter process src.transitions end dfa.states; table let make (type g r dfa) branches (dfa : (g, r, dfa) DFA.t) = let reverse_transitions = reverse_transitions dfa in let iter_reverse_transitions (type n) (t : (g, r, dfa, n) DFA.state) (f : (g, r, dfa, n) rev_mapping -> unit) = match reverse_transitions.:(t.index) with | Rev_packed [] -> () | Rev_packed (Rev_mapping (_, mapping0) :: _ as xs) -> let Refl = assert_equal_length mapping0 t.branches in List.iter f xs in let open struct type 'n data = { state: (g, r, dfa, 'n) DFA.state; mutable reachable: 'n indexset; mutable splits: 'n indexset; mutable new_splits: 'n indexset; mutable chain: ('n index * Order_chain.element) list; mutable queued: bool; } type packed = Packed : 'n data -> packed [@@ocaml.unboxed] let data = dfa.states |> Vector.map @@ fun (DFA.Packed t) -> let n = Vector.length t.branches in let reachable = IndexSet.init_from_set n (Boolvector.test t.accepting) in let splits = IndexSet.empty in let new_splits = IndexSet.empty in Packed {state=t; reachable; splits; new_splits; chain=[]; queued=false} let get_data (type n) (st : (g, r, dfa, n) DFA.state) : n data = let Packed split = data.:(st.index) in let Refl = assert_equal_length st.branches split.state.branches in split end in (* First pass: compute reachable branches *) begin let todo = ref [] in let propagate (Packed t) = let reach = t.reachable in iter_reverse_transitions t.state @@ fun (Rev_mapping (src, mapping)) -> let s = get_data src in let changed = ref false in IndexSet.iter (fun i -> let j, _ = mapping.:(i) in let reach' = s.reachable in let reach'' = IndexSet.add j reach' in if not (IndexSet.equal reach' reach'') then ( s.reachable <- reach''; changed := true; ) ) reach; if !changed then push todo (Packed s) in Vector.iter propagate data; fixpoint ~propagate todo; stopwatch 3 "Computed reachability"; end; (* Pass 2: Mark reachable transitions *) Vector.iter begin fun (Packed t) -> let reach = t.reachable in iter_reverse_transitions t.state @@ fun (Rev_mapping (_, mapping)) -> IndexSet.iter (fun i -> let _, (_, usage) = mapping.:(i) in Usage.mark_used usage ) reach end data; (* Pass 3: Report unmarked entities *) begin let reachable_branches = let Packed t = data.:(dfa.initial) in IndexSet.map (Vector.get t.state.branches) t.reachable in let iter_re f (re : Syntax.regular_expr) = match re.desc with | Atom _ -> () | Filter _ -> () | Repetition {expr; policy = _} -> f expr | Reduce {capture = _; mark = _; expr; policy = _} -> f expr | Alternative res -> List.iter f res | Concat res -> List.iter f res in let rec check (re : Syntax.regular_expr) = match re.desc with | Atom (_, _, mark) | Reduce {mark; _} -> if Usage.is_unused mark then Syntax.warn re.position "expression is unreachable" | _ -> iter_re check re in Vector.iteri (fun branch (pattern : Syntax.pattern) -> if IndexSet.mem branch reachable_branches then check pattern.expr else Syntax.warn pattern.expr.position "clause is unreachable" ) branches.pattern end; stopwatch 3 "Dead-code analysis"; (* Pass 4: Compute priority splits *) begin let count = ref 0 in let todo = ref [] in Vector.iter begin fun (Packed t) -> t.new_splits <- IndexSet.init_from_set (Vector.length t.state.branches) (Boolvector.test t.state.accepting); if IndexSet.is_not_empty t.new_splits then push todo (Packed t); end data; let schedule (type n) (t : n data) (splits : n indexset) = let splits = IndexSet.diff splits t.splits in if IndexSet.is_empty splits then () else if IndexSet.is_empty t.new_splits then ( incr count; push todo (Packed t); t.new_splits <- splits; ) else t.new_splits <- IndexSet.union t.new_splits splits in let rec schedule_one : type n. n data -> n indexset -> unit = fun (type n) (t : n data) (splits : n indexset) -> let splits = IndexSet.diff splits t.splits in if IndexSet.is_empty splits then () else if IndexSet.is_empty t.new_splits then ( t.new_splits <- splits; propagate (Packed t) ) else t.new_splits <- IndexSet.union t.new_splits splits and propagate (Packed src) = let new_splits = src.new_splits in src.new_splits <- IndexSet.empty; src.splits <- IndexSet.union src.splits new_splits; let new_splits = IndexSet.elements new_splits in let rec map_one mapping tgt i x xs = let n = Array.length mapping in if i >= n then IndexSet.empty else let x', _ = mapping.(i) in if x' < x then map_one mapping tgt (i + 1) x xs else let branch = src.state.branches.:(x) in let acc = map_splits mapping tgt (i + 1) xs in if Index.equal src.state.branches.:(x') branch then IndexSet.add (Index.of_int (Vector.length tgt.DFA.branches) i) acc else acc and map_splits mapping tgt i = function | [] -> IndexSet.empty | x :: xs -> map_one mapping tgt i x xs in match src.state.transitions with | [] -> () | [DFA.Transition {mapping; target; _}] -> schedule_one (get_data target) (map_splits (Vector.as_array mapping) target 0 new_splits) | xs -> List.iter begin fun (DFA.Transition {mapping; target; _}) -> schedule (get_data target) (map_splits (Vector.as_array mapping) target 0 new_splits) end xs in fixpoint ~propagate todo; stopwatch 3 "computed priority splits (%d refinements)" !count end; (* Pass 5: Construct priority chain and remapping *) let chain = Order_chain.make () in let pairings = Vector.make (DFA.state_count dfa) [] in begin let group_by_branch t = function | [] -> [] | (i, _) as x :: xs -> let rec loop branch acc accs = function | [] -> List.rev ((branch, List.rev acc) :: accs) | (i, _) as x :: xs -> let branch' = t.DFA.branches.:(i) in if branch = branch' then loop branch (x :: acc) accs xs else loop branch' [x] ((branch, List.rev acc) :: accs) xs in loop t.branches.:(i) [x] [] xs in let rec chain_next_split i element = function | (i', element') :: rest -> let c = Index.compare i' i in if c < 0 then chain_next_split i element' rest else if c = 0 then (element', rest) else (Order_chain.extend element, rest) | [] -> (Order_chain.next element, []) in let chain_processed = Boolvector.make (DFA.state_count dfa) false in let root = Order_chain.root chain in let Packed initial = data.:(dfa.initial) in initial.chain <- ( match IndexSet.elements initial.splits with | [] -> [] | splits -> let rec fresh_chain branch element = function | [] -> [] | m :: ms -> let branch' = initial.state.branches.:(m) in let element = if Index.equal branch branch' then Order_chain.next element else root in (m, element) :: fresh_chain branch' element ms in fresh_chain (Index.of_int (branch_count branches) 0) root splits ); Boolvector.set chain_processed dfa.initial; let direct_transitions = ref 0 in let = ref 0 in let trivial_pairing = ref 0 in let nontrivial_pairing = ref 0 in let transitions_with_pairing = ref 0 in let process_direct_transition src mapping tgt = assert (not (Boolvector.test chain_processed tgt.state.DFA.index)); incr direct_transitions; let sbranches = src.state.branches in let tbranches = tgt.state.branches in let rec extract_branch branch acc = function | (n, _) as x :: xs when Index.equal sbranches.:(n) branch -> extract_branch branch (x :: acc) xs | rest -> List.rev acc, rest in let rec seek_branch branch = function | [] -> [], [] | ((n, _) as x :: xs) as xxs -> let c = Index.compare sbranches.:(n) branch in if c < 0 then seek_branch branch xs else if c = 0 then extract_branch branch [x] xs else ([], xxs) in let rec process_splits chain = function | [] -> [] | m :: ms -> let branch = tbranches.:(m) in let chain, rest = seek_branch branch chain in process_branch branch chain rest m ms and process_branch branch chain rest m ms = let i, _ = mapping.:(m) in let split, chain = chain_next_split i root chain in (m, split) :: process_continue_branch branch chain rest ms and process_continue_branch branch chain rest = function | m :: ms when Index.equal tbranches.:(m) branch -> process_branch branch chain rest m ms | ms -> process_splits rest ms in tgt.chain <- process_splits src.chain (IndexSet.elements tgt.splits); Boolvector.set chain_processed tgt.state.index in let src mapping tgt = incr shared_transitions; assert (Boolvector.test chain_processed src.state.index); assert (Boolvector.test chain_processed tgt.state.index); let src_chain = group_by_branch src.state src.chain in let tgt_chain = group_by_branch tgt.state tgt.chain in let rec find_element i element = function | [] -> element, [] | (i', element') :: xs as xxs -> if (i' : _ index) > i then element, xxs else find_element i element' xs in let rec pair_elements src_elements = function | [] -> [] | (i, tgt_element) :: rest -> let src_element, src_elements = find_element (fst mapping.:(i)) root src_elements in let tl = pair_elements src_elements rest in if src_element == tgt_element then ( incr trivial_pairing; tl ) else ( incr nontrivial_pairing; (src_element, tgt_element) :: tl ) in let rec process_tgt clause elements next = function | (clause', _) :: rest when compare_index clause' clause < 0 -> process_tgt clause elements next rest | (clause', elements') :: rest when equal_index clause clause' -> let tl = process_next rest next in begin match pair_elements elements' elements with | [] -> tl | hd -> (clause, hd) :: tl end | src_chain -> process_next src_chain next and process_next src_chain = function | [] -> [] | (clause, elements) :: next -> process_tgt clause elements next src_chain in process_next src_chain tgt_chain in let visit acc (_, Packed src) = assert (Boolvector.test chain_processed src.state.index); let acc = ref acc in let process_transition (DFA.Transition {label; target; mapping; _}) = let tgt = get_data target in let pairing = if Boolvector.test chain_processed target.index then process_shared_transition src mapping tgt else ( process_direct_transition src mapping tgt; push acc (label, Packed tgt); [] ) in if not (list_is_empty pairing) then incr transitions_with_pairing; pairing in let pairings' = List.map process_transition src.state.transitions in pairings.:(src.state.index) <- pairings'; !acc in let rec loop = function | [] -> () | xs -> loop (List.fold_left visit [] (List.sort (fun (l1, _) (l2, _) -> IndexSet.compare l1 l2) xs)) in loop (visit [] ((), Packed initial)); stopwatch 3 "constructed order chain with %d elements \ (%d direct transitions, %d shared, %d trivial pairings, \ %d non-trivial pairings, %d transitions with pairings)" (Order_chain.freeze chain) !direct_transitions !shared_transitions !trivial_pairing !nontrivial_pairing !transitions_with_pairing; end; (* Pass 6: Collect accepted branches and their priority level *) let accepts = data |> Vector.map @@ fun (Packed t) -> let remainder = ref t.chain in let accepting = t.state.accepting in let branches = t.state.branches in let rec loop i element = function | (i', element') :: rest when Index.compare i' i <= 0 && Index.equal branches.:(i') branches.:(i) -> loop i element' rest | rest -> remainder := rest; element in let get_element i = loop i (Order_chain.root chain) !remainder in let acc = ref [] in let test_branch i index = if Boolvector.test accepting i then push acc (index, Order_chain.evaluate (get_element i)) in Vector.iteri test_branch branches; List.rev !acc in (* Worklist on states for computing fixed points *) let todo = ref [] in let schedule st = if not st.queued then ( st.queued <- true; push todo (Packed st); ) in let get (type n) v (st : (_, _, _, n) DFA.state) : (n, Capture.set) vector = Vector.cast_array (Vector.length st.branches) v.:(st.index) in (* Pass 6b: Accepted before, for pruning priority changes *) let accepted_before = Vector.map (fun xs -> IndexSet.of_list (List.map fst xs)) accepts in let () = let propagate (Packed src) = assert src.queued; src.queued <- false; let max_clause t = let arr = Vector.as_array t.DFA.branches in arr.(Array.length arr - 1) in let def_src = accepted_before.:(src.state.index) in let def_min = Option.get (IndexSet.minimum def_src) in List.iter begin fun (DFA.Transition {target; _}) -> let max_clause = max_clause target in let def_tgt = accepted_before.:(target.index) in let def_tgt' = IndexSet.fused_inter_union def_src (IndexSet.init_interval def_min max_clause) ~acc:def_tgt in if def_tgt' != def_tgt then ( accepted_before.:(target.index) <- def_tgt'; schedule (get_data target) ) end src.state.transitions in fixpoint ~propagate todo; stopwatch 3 "Computed accepted-before"; in let liveness, defined = (* Pass 7: Compute liveness of variables (Section 4.4.1, Definition 16) *) let liveness = dfa.states |> Vector.map @@ fun (DFA.Packed st) -> let immediate = st.branches |> Vector.mapi @@ fun i br -> if Boolvector.test st.accepting i then (schedule (get_data st); branches.br_captures.:(br)) else IndexSet.empty in Vector.as_array immediate in let propagate (Packed tgt) = assert tgt.queued; tgt.queued <- false; let live_tgt = get liveness tgt.state in iter_reverse_transitions tgt.state begin fun (Rev_mapping (src, mapping)) -> let changed = ref false in let live_src = get liveness src in let src = get_data src in let process_mapping tgt_j (src_i, (captures, _usage)) = let successors = IndexSet.diff live_tgt.:(tgt_j) captures in let live = live_src.:(src_i) in let live' = IndexSet.union successors live in if live' != live then ( live_src.:(src_i) <- live'; changed := true; ) in Vector.iteri process_mapping mapping; if !changed then schedule src end; in fixpoint ~propagate todo; stopwatch 3 "Computed liveness"; (* Pass 8: Compute defined variables (Section 4.4.1, Definition 17) *) let defined = dfa.states |> Vector.map @@ fun (DFA.Packed tgt) -> let live = get liveness tgt in let result = Vector.make (Vector.length live) IndexSet.empty in iter_reverse_transitions tgt begin fun (Rev_mapping (_src, mapping)) -> let process_mapping tgt_j (_, (captures, _usage)) = let captures = IndexSet.inter live.:(tgt_j) captures in result.@(tgt_j) <- IndexSet.union captures in Vector.iteri process_mapping mapping; end; if Vector.exists IndexSet.is_not_empty result then schedule (get_data tgt); Vector.as_array result in let propagate (Packed src) = assert src.queued; src.queued <- false; let def_src = get defined src.state in List.iter begin fun (DFA.Transition {target; mapping; _}) -> let changed = ref false in let live_tgt = get liveness target in let def_tgt = get defined target in let process_mapping tgt_j (src_i, (_captures, _usage)) = let def = def_tgt.:(tgt_j) in let def' = IndexSet.union (IndexSet.inter def_src.:(src_i) live_tgt.:(tgt_j)) def in if def != def' then ( changed := true; def_tgt.:(tgt_j) <- def' ) in Vector.iteri process_mapping mapping; if !changed then schedule (get_data target) end src.state.transitions in fixpoint ~propagate todo; stopwatch 3 "Computed defined"; (liveness, defined) in (* Pass 9: Classes *) let classes = let lift_class domain i caps = IndexSet.map (Prod.inj domain i) caps in let classes = Vector.mapi (fun i def -> let Vector.Packed v = Vector.of_array def in let domain = Vector.length v in let vc = Vector.fold_righti (fun i caps -> IndexSet.union (lift_class domain i caps)) v IndexSet.empty in let Packed st = data.:(i) in let classes = if IndexSet.is_empty vc then [] else (schedule st; [vc]) in V {domain = Vector.length v; classes} ) defined in let get_classes (type n) (st : (_, _, _, n) DFA.state) : n var indexset list = let V {domain; classes} = classes.:(st.index) in let Refl = assert_equal_cardinal domain (Vector.length st.branches) in classes in let set_classes (type n) (st : (_, _, _, n) DFA.state) (vc : n var indexset list) = let V v = classes.:(st.index) in if List.compare_lengths v.classes vc <> 0 then let Refl = assert_equal_cardinal v.domain (Vector.length st.branches) in schedule (get_data st); v.classes <- vc in let propagate (Packed src) = assert src.queued; src.queued <- false; let sdomain = Vector.length src.state.branches in let vc' = get_classes src.state in List.iter begin fun (DFA.Transition {target; mapping; _}) -> let vc = get_classes target in let tdomain = Vector.length target.branches in let defined = get defined target in let rmap = Vector.make sdomain None in let caps = ref IndexSet.empty in Vector.rev_iteri (fun tgt_j (src_i, (caps', _)) -> rmap.:(src_i) <- Some tgt_j; let caps' = IndexSet.inter defined.:(tgt_j) caps' in caps := IndexSet.union (lift_class tdomain tgt_j caps') !caps; ) mapping; let caps = !caps in let vc' = List.map (fun set -> IndexSet.filter_map (fun v -> let i, j = Prod.prj sdomain v in match rmap.:(i) with | Some i' when IndexSet.mem j defined.:(i')-> let v' = Prod.inj tdomain i' j in if IndexSet.mem v' caps then None else Some v' | _ -> None ) set ) vc' in set_classes target (IndexRefine.partition (caps :: vc @ vc')); end src.state.transitions in fixpoint ~propagate todo; stopwatch 3 "Computed classes"; classes in (* Pass 10: (Naive) register allocation *) let registers : (dfa, Register.t Capture.map array) vector = defined |> Vector.mapi @@ fun i live -> let Vector.Packed live = Vector.of_array live in let domain = Vector.length live in let V vc = classes.:(i) in let Refl = assert_equal_cardinal vc.domain domain in let result = Vector.make domain IndexMap.empty in List.iteri (fun reg vars -> let reg = Register.of_int reg in IndexSet.iter (fun var -> let i, cap = Prod.prj domain var in result.@(i) <- IndexMap.add cap reg ) vars; ) vc.classes; Vector.as_array result in let register_count = let max_live = ref 0 in let max_index = ref (-1) in let check_state (DFA.Packed state) = let regs = registers.:(state.index) in let max_live' = Array.fold_left (fun sum map -> sum + IndexMap.cardinal map) 0 regs in max_live := max !max_live max_live'; Array.iter (IndexMap.iter (fun _ reg -> max_index := max !max_index (Index.to_int reg))) regs; in Vector.iter check_state dfa.states; stopwatch 3 "allocated registers (max live variables: %d, register count: %d)" !max_live (!max_index + 1); !max_index + 1 in (* Collect results *) {pairings; accepts; register_count; liveness; defined; classes; registers; accepted_before} end module Machine = struct type ('g, 'r) label = { filter: 'g lr1 indexset; (** The set of lr1 states that allow this transition to be taken. *) captures: (Capture.t * Register.t) list; (** The set of variables captured, and the register in which to store the variable, when the transition is taken. *) clear: Register.set; (** The set of registers to clear when the transition is taken. *) moves: Register.t Register.map; (** Registers to move when taking this transition. The source register is used as a key and the target as a value. *) priority: (('g, 'r) branch index * priority * priority) list; (** Dynamic priority levels to remap. An element (c, p1, p2) means that a match of clause [c] at priority [p1] in the source state corresponds to a match at priority [p2] in the target state. *) } let label_compare t1 t2 = let c = IndexSet.compare t1.filter t2.filter in if c <> 0 then c else let c = List.compare (compare_pair compare_index compare_index) t1.captures t2.captures in if c <> 0 then c else let c = IndexMap.compare compare_index t1.moves t2.moves in if c <> 0 then c else let c = IndexSet.compare t1.clear t1.clear in c (* A machine is parameterized by: - ['g] is the grammar (input) - ['r] is the set of rules (input) - ['st] is the set of states (output) - ['tr] is the set of transitions (output) *) type ('g, 'r, 'st, 'tr) t = { initial: 'st index option; source: ('tr, 'st index) vector; target: ('tr, 'st index) vector; label: ('tr, ('g, 'r) label) vector; (* Transitions labelled by Lr1 states in [unhandled st] are reachable (there exists viable stacks that can reach them), but are not defined (there is no [transitions] for them). They should be rejected at runtime. *) unhandled: ('st, 'g lr1 indexset) vector; (* [outgoing st] is the set of transitions leaving [st] *) outgoing: ('st, 'tr indexset) vector; (* [accepting.:(st)] lists the clauses accepted when reaching [st]. Each clause comes with a priority level and a mapping indicating in which register captured variables can be found. *) accepting: ('st, (('g, 'r) branch index * priority * Register.t Capture.map) list) vector; (* [branches.:(st)] lists the clauses being recognized in state [st]. The boolean indicates if the clause is accepted in this state. *) branches: ('st, (('g, 'r) branch index * bool * Register.t Capture.map) list) vector; register_count : int; partial_captures : Capture.set; } type ('g, 'r) _t = T : ('g, 'r, 'st, 'tr) t -> ('g, 'r) _t let dump g t oc = let p fmt = Printf.fprintf oc fmt in p "digraph G {\n"; p " node[shape=rect];\n"; Vector.iteri (fun st accept -> let accept = List.map (fun (br, _, captures) -> string_of_index br ^ "[" ^ string_concat_map "," (fun (cap, reg) -> string_of_cap cap ^ " = !" ^ string_of_index reg) (IndexMap.bindings captures) ^ "]" ) accept in p " st%d[label=%S];\n" (Index.to_int st) (String.concat "," accept); ) t.accepting; Vector.iteri (fun tr label -> p " st%d -> st%d [label=%S];\n" (Index.to_int t.source.:(tr)) (Index.to_int t.target.:(tr)) (label_to_short_string g label.filter ^ "\n" ^ String.concat "\n" ( List.map (fun (src, dst) -> string_of_index dst ^ " <- " ^ string_of_index src) (IndexMap.bindings label.moves) @ [ string_concat_map ", " (fun (cap, reg) -> string_of_cap cap ^ " = !" ^ string_of_index reg) label.captures ] ) ); ) t.label; p "}\n" let minimize (type g r dfa) (branches : (g, r) branches) (dfa : (g, r, dfa) DFA.t) (dataflow : (g, r, dfa) Dataflow.t) = let partial_captures = ref IndexSet.empty in let module Transition = struct type t = { source: dfa index; target: dfa index; label: (g, r) label; } open IndexBuffer include Gen.Make() let vector = let gen = get_generator () in let process_transition source src_regs (DFA.Transition {label=filter; mapping; target; _}) pairings = let tgt_regs = Dataflow.registers dataflow target in let captures = ref [] in let moves = ref IndexMap.empty in let clear = ref IndexSet.empty in let process_mapping (src_i, (captured, _usage)) tgt_bank = let src_bank = src_regs.:(src_i) in let process_tgt_reg capture tgt_reg = if IndexSet.mem capture captured then push captures (capture, tgt_reg) else match IndexMap.find_opt capture src_bank with | Some src_reg -> if src_reg <> tgt_reg then moves := IndexMap.add src_reg tgt_reg !moves | None -> partial_captures := IndexSet.add capture !partial_captures; clear := IndexSet.add tgt_reg !clear in IndexMap.iter process_tgt_reg tgt_bank in Vector.iter2 process_mapping mapping tgt_regs; let captures = !captures and moves = !moves and clear = !clear in let accepted_before = dataflow.accepted_before.:(source) in let priority = List.concat_map (fun (branch, pairs) -> if IndexSet.mem branch accepted_before then List.map (fun (p1, p2) -> branch, Order_chain.evaluate p1, Order_chain.evaluate p2) pairs else [] ) pairings in let label = {filter; captures; moves; clear; priority} in ignore (Gen.add gen {source; target = target.index; label}) in let process_state (DFA.Packed source) pairings = List.iter2 (process_transition source.index (Dataflow.registers dataflow source)) source.transitions pairings in Vector.iter2 process_state dfa.states dataflow.pairings; Gen.freeze gen end in let partial_captures = let acc = !partial_captures in Vector.fold_left begin fun acc (DFA.Packed st) -> Vector.fold_lefti2 begin fun acc i index regs -> if Boolvector.test st.accepting i then let cap = branches.br_captures.:(index) in IndexSet.fold begin fun var acc -> if IndexMap.mem var regs then acc else IndexSet.add var acc end cap acc else acc end acc st.branches (Dataflow.registers dataflow st) end acc dfa.states in let module Min = Valmari.Minimize_with_custom_decomposition(struct type states = dfa let states = DFA.state_count dfa type transitions = Transition.n let transitions = Transition.n type [@ocaml.warning "-34"] nonrec label = (g, r) label let label i = Transition.vector.:(i).label let source i = Transition.vector.:(i).source let target i = Transition.vector.:(i).target let initials f = f dfa.initial let finals f = Vector.iteri (fun index accepts -> match accepts with | [] -> () | _ :: _ -> f index ) dataflow.accepts let [@ocaml.warning "-32"] refinements refine = (* Refine states by accepted actions *) let table = Hashtbl.create 7 in Vector.rev_iteri (fun index accepts -> match accepts with | [] -> () | _ :: _ -> match Hashtbl.find_opt table accepts with | None -> Hashtbl.add table accepts (ref (IndexSet.singleton index)) | Some r -> r := IndexSet.add index !r ) dataflow.accepts; Hashtbl.iter (fun _ r -> refine (fun ~add -> IndexSet.iter add !r)) table let [@ocaml.warning "-32"] decomposition refine = let acc = ref [] in let actions = ref [] in Index.iter transitions (fun tr -> let label = label tr in push acc (label.filter, tr); if label.captures <> [] || IndexSet.is_not_empty label.clear || not (IndexMap.is_empty label.moves) then push actions ({label with filter = IndexSet.empty}, tr); ); IndexRefine.iter_decomposition !acc (fun _set iter -> refine (fun ~add -> iter add)); let actions = List.sort (fun (l1, _) (l2, _) -> label_compare l1 l2) !actions in let rec group_actions l ks = function | (l', k) :: rest when label_compare l l' = 0 -> group_actions l (k :: ks) rest | rest -> refine (fun ~add -> List.iter add ks); start rest and start = function | [] -> () | (l, k) :: rest -> group_actions l [k] rest in start actions end) in let initial = if Array.length Min.initials = 0 then None else Some Min.initials.(0) in let source = Vector.init Min.transitions Min.source in let target = Vector.init Min.transitions Min.target in let label = Vector.init Min.transitions Min.label in let accepting = Vector.init Min.states @@ fun state -> let DFA.Packed source = dfa.states.:(Min.represent_state state) in let priorities = ref dataflow.accepts.:(source.index) in let get_priority clause = match !priorities with | (clause', p) :: rest -> if not (Index.equal clause clause') then ( Printf.eprintf "Accepting clause %d but got priority for clause %d?!\n" (Index.to_int clause) (Index.to_int clause'); assert false ) else if false then Printf.eprintf "Accepting clause %d with priority %d\n" (Index.to_int clause) p; priorities := rest; p | [] -> assert false in let add_accepting acc i index regs = if Boolvector.test source.accepting i then (index, get_priority index, regs) :: acc else acc in let registers = Dataflow.registers dataflow source in List.rev (Vector.fold_lefti2 add_accepting [] source.branches registers) in let branches = Vector.init Min.states @@ fun state -> let DFA.Packed source = dfa.states.:(Min.represent_state state) in let add_branch i branch regs acc = (branch, Boolvector.test source.accepting i, regs) :: acc in let registers = Dataflow.registers dataflow source in Vector.fold_righti2 add_branch source.branches registers [] in let outgoing = Vector.make Min.states IndexSet.empty in let unhandled = Vector.make Min.states IndexSet.empty in (* Initialize unhandled with all reachable labels *) Index.iter (DFA.state_count dfa) begin fun st -> match Min.transport_state st with | None -> () | Some index -> unhandled.@(index) <- IndexSet.union dfa.domain.:(st) end; (* Remove the ones for which transitions exist. Populate outgoing. *) Index.rev_iter Min.transitions begin fun tr -> let index = Min.source tr in let label = Min.label tr in let visited = Vector.get unhandled index in let visited = IndexSet.diff visited label.filter in Vector.set unhandled index visited; outgoing.@(index) <- IndexSet.add tr end; stopwatch 3 "OutDFA"; T {initial; source; target; label; unhandled; outgoing; partial_captures; register_count = dataflow.register_count; accepting; branches} let states t = Vector.length t.outgoing end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>